cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052012 Number of primes between successive Lucas numbers.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 4, 6, 9, 15, 20, 31, 48, 72, 110, 170, 257, 400, 608, 950, 1448, 2256, 3487, 5413, 8440, 13118, 20478, 31932, 49995, 78222, 122553, 192262, 301826, 474039, 745772, 1173270, 1848000, 2912623, 4593723, 7249438, 11448047
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Examples

			Between L(7)=29 and L(8)=47 we find the following primes: 31, 37, 41 and 43 hence a(7)=4.
		

Crossrefs

Programs

  • Haskell
    a052012 n = a052012_list !! (n-1)
    a052012_list = c 1 0 $ tail a000204_list where
      c x y ls'@(l:ls) | x < l     = c (x+1) (y + a010051 x) ls'
                       | otherwise = y : c (x+1) 0 ls
    -- Reinhard Zumkeller, Dec 18 2011
  • Mathematica
    PrimePi[Last[#]-1]-PrimePi[First[#]]&/@Partition[LucasL[ Range[45]],2,1] (* Harvey P. Dale, Jun 28 2011 *)

Formula

a(n) = pi(L(n + 1) - 1) - pi(L(n)), where pi is the prime counting function (A000720) and L = A000032. - Wesley Ivan Hurt, Nov 09 2023
a(n) = A277062(n+1) - A277062(n) - [n+1 in A001606], where [] denotes the Iverson bracket. - Amiram Eldar, Jun 10 2024

A131354 Number of primes in the open interval between successive tribonacci numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 3, 5, 8, 12, 23, 38, 61, 109, 179, 312, 537, 920, 1598, 2779, 4835, 8461, 14784, 25984, 45696, 80505, 142165, 251300, 444930, 788828, 1400756, 2489594, 4430712, 7892037, 14073786, 25118167, 44869652, 80223172, 143535369, 257014148, 460524864, 825732764
Offset: 0

Views

Author

Jonathan Vos Post, Oct 21 2007

Keywords

Comments

This is to tribonacci numbers A000073 as A052011 is to Fibonacci numbers and as A052012 is to Lucas numbers A000204. It is mere coincidence that all values until a(12) = 38 are themselves Fibonacci. The formula plus the known asymptotic prime distribution gives the asymptotic approximation of this sequence, which is the same even if we use one of the alternative definitions of tribonacci with different initial values.

Examples

			Between Trib(8)=24 and Trib(9)=44 we find the following primes: 29, 31, 37, 41, 43, hence a(8)=5.
		

Crossrefs

Programs

  • Maple
    A131354 := proc(n)
        a := 0 ;
        for k from 1+A000073(n)  to A000073(n+1)-1 do
            if isprime(k) then
                a := a+1 ;
            end if;
        end do;
        a ;
    end proc: # R. J. Mathar, Dec 14 2011
  • Mathematica
    trib[n_] := SeriesCoefficient[x^2/(1 - x - x^2 - x^3), {x, 0, n}];
    a[n_] := PrimePi[trib[n + 1] - 1] - PrimePi[trib[n]];
    a /@ Range[0, 42] (* Jean-François Alcover, Apr 10 2020 *)
  • PARI
    \\ here b(n) is A000073(n).
    b(n)={polcoef(x^2/(1-x-x^2-x^3) + O(x*x^n), n)}
    a(n)={primepi(b(n+1)-1) - primepi(b(n))} \\ Andrew Howroyd, Jan 02 2020

Formula

a(n) = A000720(A000073(n+1) - 1) - A000720(A000073(n)) for n >= 3. [formula edited Andrew Howroyd, Jan 02 2020]

Extensions

Terms a(26) and beyond from Andrew Howroyd, Jan 02 2020

A130973 Number of primes between successive pairs of twin primes, for a(n) > 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 4, 2, 1, 3, 1, 2, 3, 10, 4, 7, 4, 3, 2, 1, 2, 18, 2, 2, 17, 1, 2, 6, 9, 3, 1, 1, 1, 8, 3, 2, 15, 1, 4, 1, 1, 7, 7, 4, 4, 3, 4, 1, 1, 7, 2, 5, 1, 5, 18, 2, 5, 4, 3, 1, 5, 1, 18, 12, 2, 8, 1, 4, 2, 5, 4, 1, 1, 1, 9, 10
Offset: 1

Views

Author

Omar E. Pol, Aug 23 2007

Keywords

Comments

a(k) corresponds to the k-th term in the isolated prime sequence A007510 or A134797. a(1) corresponds to 23. a(2) corresponds to 37. a(3) corresponds to 47 and 53. - Enrique Navarrete, Jan 28 2017
Lengths of the runs of consecutive integers in A176656. - R. J. Mathar, Feb 19 2017

Crossrefs

Cf. A001223, A007510 (isolated primes), A027883, A048614, A048198, A052011, A052012, A061273, A076777, A073784, A082602, A088700, A179067 (clusters of twin primes).
Showing 1-3 of 3 results.