A052141 Number of paths from (0,0) to (n,n) that always move closer to (n,n) (and do not pass (n,n) and backtrack).
1, 3, 26, 252, 2568, 26928, 287648, 3112896, 34013312, 374416128, 4145895936, 46127840256, 515268544512, 5775088103424, 64912164888576, 731420783788032, 8259345993203712, 93443504499523584, 1058972245409005568, 12019152955622817792, 136599995048232747008
Offset: 0
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 6.3.9.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Elina Robeva and Melinda Sun, Bimonotone Subdivisions of Point Configurations in the Plane, arXiv:2007.00877 [math.CO], 2020. See A(2,n) column in Table 3 (p. 10).
Programs
-
Magma
[n eq 0 select 1 else 2^(n-1)*Evaluate(LegendrePolynomial(n), 3) : n in [0..40]]; // G. C. Greubel, May 21 2023
-
Mathematica
a[0]=1; a[n_]:= Hypergeometric2F1[-n, n+1, 1, -1]*2^(n-1); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 23 2012, after Jon Stadler *) Table[2^(n-1)*LegendreP[n,3] +Boole[n==0]/2, {n,0,40}] (* G. C. Greubel, May 21 2023 *) CoefficientList[Series[(1+1/Sqrt[1-12x+4x^2])/2,{x,0,30}],x] (* Harvey P. Dale, Mar 10 2024 *)
-
SageMath
def A052141(n): return 2^(n-1)*gen_legendre_P(n,0,3) + int(n==0)/2 [A052141(n) for n in range(41)] # G. C. Greubel, May 21 2023
Formula
G.f.: (1/2)*( 1 + 1/sqrt(1 - 12*x + 4*x^2) ).
a(n) = 2^(n-1) * A001850(n). - Jon Stadler (jstadler(AT)capital.edu), Apr 30 2003
D-finite with recurrence: n*a(n) = 6*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ sqrt(8+6*sqrt(2))*(6+4*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
Comments