cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133384 Numbers with n 0's between 1 and 2.

Original entry on oeis.org

12, 102, 1002, 10002, 100002, 1000002, 10000002, 100000002, 1000000002, 10000000002, 100000000002, 1000000000002, 10000000000002, 100000000000002, 1000000000000002, 10000000000000002, 100000000000000002, 1000000000000000002, 10000000000000000002
Offset: 0

Views

Author

Paul Curtz, Oct 29 2007

Keywords

Crossrefs

Subsequence of A052148.

Programs

  • Magma
    [10^(n+1)+2: n in [0..20]]; // Vincenzo Librandi, Aug 10 2011
  • Mathematica
    Table[FromDigits[Join[PadRight[{1},n,0],{2}]],{n,20}] (* or *) 10^Range[20]+2 (* or *) LinearRecurrence[{11,-10},{12,102},20] (* Harvey P. Dale, Oct 03 2013 *)

Formula

a(n) = 10^(n+1) + 2. - Vincenzo Librandi, Aug 10 2011
a(n) = 11*a(n-1) - 10*a(n-2); a(0)=12, a(1)=102. - Harvey P. Dale, Oct 03 2013
From Stefano Spezia, Nov 30 2023: (Start)
O.g.f.: 6*(2 - 5*x)/((1 - x)*(1 - 10*x)).
E.g.f.: 2*exp(x)*(1 + 5*exp(9*x)).
(R(a(n)) + 1)/(a(n) - 1) = 2, where R(k) = A004086(k). (End)
a(n) = 6 * A126109(n). - Alois P. Heinz, Nov 30 2023

A198852 a(n) = 4*8^n - 1.

Original entry on oeis.org

3, 31, 255, 2047, 16383, 131071, 1048575, 8388607, 67108863, 536870911, 4294967295, 34359738367, 274877906943, 2199023255551, 17592186044415, 140737488355327, 1125899906842623, 9007199254740991, 72057594037927935, 576460752303423487, 4611686018427387903
Offset: 0

Views

Author

Vincenzo Librandi, Oct 31 2011

Keywords

Comments

In base 8, the numbers of this sequence are written 37, 377, 3777, 37777, ... and satisfy the A052148 condition. - Michel Marcus, Aug 23 2013

Crossrefs

Programs

  • Magma
    [4*8^n-1: n in [0..30]];

Formula

a(n) = 8*a(n-1) + 7.
a(n) = 9*a(n-1) - 8*a(n-2) for n > 1.
G.f.: ( 3+4*x ) / ( (8*x-1)*(x-1) ). - R. J. Mathar, Oct 31 2011
a(n) = A013731(n) - 1. - Michel Marcus, Aug 23 2013
E.g.f.: exp(x)*(4*exp(7*x) - 1). - Stefano Spezia, May 29 2024
Showing 1-2 of 2 results.