cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A002988 Number of trimmed trees with n nodes.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 3, 6, 10, 21, 39, 82, 167, 360, 766, 1692, 3726, 8370, 18866, 43029, 98581, 227678, 528196, 1232541, 2888142, 6798293, 16061348, 38086682, 90607902, 216230205, 517482053, 1241778985, 2987268628, 7203242490
Offset: 0

Views

Author

Keywords

Comments

From Christian G. Bower, Dec 15 1999: (Start)
A trimmed tree is a tree with a forbidden limb of length 2.
A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps. (End)

References

  • K. L. McAvaney, personal communication.
  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=2, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 2, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is the g.f. of A002955. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(5/2), where d = 2.59952511060090659632378883695..., c = 0.3758284247032014502508501798... . - Vaclav Kotesovec, Aug 24 2014

Extensions

More terms from Christian G. Bower, Dec 15 1999

A002955 Number of (unordered, unlabeled) rooted trimmed trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 36, 79, 175, 395, 899, 2074, 4818, 11291, 26626, 63184, 150691, 361141, 869057, 2099386, 5088769, 12373721, 30173307, 73771453, 180800699, 444101658, 1093104961, 2695730992, 6659914175, 16481146479, 40849449618
Offset: 1

Views

Author

Keywords

Comments

A rooted trimmed tree is a tree without limbs of length >= 2. Limbs are the paths from the leafs (towards the root) to the nearest branching point (with the root considered to be a branching point). [clarified by Joerg Arndt, Mar 03 2015]
A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.
Also counts the unordered rooted trees without "x x" in the level sequence for the pre-order walk. The bijection transforms the two outmost nodes in all limbs of lengths >= 2 into V-shaped subtrees. - Joerg Arndt, Mar 03 2015

References

  • K. L. McAvaney, personal communication.
  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A255636.

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; local d,j,aa; aa:= n-> a(n)-`if`(n=2,1,0); if n<=1 then n else (add(d*aa(d), d=divisors(n-1)) +add(add(d*aa(d), d=divisors(j)) *a(n-j), j=1..n-2))/ (n-1) fi end: seq(a(n), n=1..32); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := a[n] = (Total[ #*b[#]& /@ Divisors[n-1] ] + Sum[ Total[ #*b[#]& /@ Divisors[j] ]*a[n-j], {j, 1, n-2}]) / (n-1); a[1] = 1; b[n_] := a[n]; b[2] = 0; Table[ a[n], {n, 1, 32}](* Jean-François Alcover, Nov 18 2011, after Maple *)

Formula

a(n) satisfies a=SHIFT_RIGHT(EULER(a-b)) where b(2)=1, b(k)=0 if k != 2.
a(n) ~ c * d^n / n^(3/2), where d = 2.59952511060090659632378883695107..., c = 0.391083882871301267612387143401... . - Vaclav Kotesovec, Aug 24 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999

A052329 Number of rooted trees with a forbidden limb of length 6.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 47, 113, 281, 706, 1807, 4671, 12224, 32247, 85782, 229683, 618767, 1675618, 4559263, 12457483, 34168574, 94040433, 259637564, 718892281, 1995739380, 5553867981, 15490305017, 43293762352, 121235084565
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=6, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> g(n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jul 04 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 6, 1, 0]), {d, Divisors[j]} ]*g[n-j], {j, 1, n}]/n]; a[n_] := g[n-1]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

a(n) satisfies a=SHIFT_RIGHT(EULER(a-b)) where b(6)=1, b(k)=0 if k != 6.
a(n) ~ c * d^n / n^(3/2), where d = 2.95209316333202396584501452688304..., c = 0.43842619727838455589811980703038... . - Vaclav Kotesovec, Aug 25 2014

A002992 Number of n-node trees with a forbidden limb of length 6.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 10, 22, 45, 102, 226, 531, 1253, 3044, 7456, 18604, 46798, 119133, 305567, 790375, 2057523, 5390759, 14200122, 37598572, 100005401, 267131927, 716318650, 1927758155, 5205240762, 14098580633, 38296720823, 104308468102, 284822276099
Offset: 0

Views

Author

Keywords

Comments

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

References

  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=6, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 6, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052329.
a(n) ~ c * d^n / n^(5/2), where d = 2.95209316333202396584501452688304..., c = 0.52950413787119576841378912289... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999

A052319 Number of increasing rooted trimmed trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 7, 28, 131, 720, 4513, 31824, 249513, 2151744, 20242983, 206313024, 2264425179, 26628836352, 334022337153, 4451717814528, 62820790592913, 935750983412736, 14672143677452679, 241555066200437760
Offset: 1

Views

Author

Christian G. Bower, Dec 11 1999

Keywords

Comments

In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.
A trimmed tree is a tree with a forbidden limb of length 2.
A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.
Number of permutations on [n+1] beginning with 12 and avoiding a consecutive 132 pattern (n>=1). For example, a(4)=2 counts 12345, 12453. - Ralf Stephan, Apr 25 2004

Crossrefs

Programs

  • Maple
    seq(n! * coeff(series(-log(1-sqrt(Pi/2)*erf(x/sqrt(2))), x, n+1), x, n), n=1..20) # Vaclav Kotesovec, Jan 07 2014
  • Mathematica
    Rest[CoefficientList[Series[-Log[1-Sqrt[Pi/2]*Erf[x/Sqrt[2]]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 07 2014 *)

Formula

E.g.f.: A(x) = 1/B(-x) where B'(x) is e.g.f. of A006882 and B(0) = 1.
E.g.f.: A(x) satisfies A'(x) = exp(A(x)-x^2/2).
E.g.f.: exp(-x^2/2)/(1-int[0..x, exp(-x^2/2)]). - Ralf Stephan, Apr 25 2004
E.g.f.: -log(1-sqrt(Pi/2)*erf(x/sqrt(2))). - Vaclav Kotesovec, Jan 07 2014
Limit n->infinity (a(n)/n!)^(1/n) = 1/(sqrt(2)*InverseErf(sqrt(2/Pi))) = 1/A240885 = 0.7839769312035474991... - Vaclav Kotesovec, Jan 07 2014
a(n) ~ (n-1)! / (sqrt(2)*InverseErf(sqrt(2/Pi)))^n. - Vaclav Kotesovec, Aug 22 2014

Extensions

Formula updated by Christian G. Bower, Mar 06 2001

A254382 Number of rooted labeled trees on n nodes such that every nonroot node is the child of a branching node or of the root.

Original entry on oeis.org

0, 1, 2, 3, 16, 85, 696, 6349, 72080, 918873, 13484080, 219335281, 3962458248, 78203547877, 1680235050872, 38958029188485, 970681471597216, 25847378934429361, 732794687650764000, 22032916968153975769, 700360446794528578520
Offset: 0

Views

Author

Geoffrey Critzer, Jan 29 2015

Keywords

Comments

Here, a branching node is a node with at least two children.
In other words, a(n) is the number of labeled rooted trees on n nodes such that the path from every node towards the root reaches a branching node (or the root) in one step.
Also labeled rooted trees that are lone-child-avoiding except possibly for the root. The unlabeled version is A198518. - Gus Wiseman, Jan 22 2020

Examples

			a(5) = 85:
...0................0...............0-o...
...|.............../ \............ /|\....
...o..............o   o...........o o o...
../|\............/ \   ...................
.o o o..........o   o   ..................
These trees have 20 + 60 + 5 = 85 labelings.
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches]) are:
  1  1[2]  1[2,3]  1[2,3,4]
     2[1]  2[1,3]  1[2[3,4]]
           3[1,2]  1[3[2,4]]
                   1[4[2,3]]
                   2[1,3,4]
                   2[1[3,4]]
                   2[3[1,4]]
                   2[4[1,3]]
                   3[1,2,4]
                   3[1[2,4]]
                   3[2[1,4]]
                   3[4[1,2]]
                   4[1,2,3]
                   4[1[2,3]]
                   4[2[1,3]]
                   4[3[1,2]]
(End)
		

Crossrefs

Cf. A231797, A052318 (condition is applied only to leaf nodes).
The unlabeled version is A198518
The non-planted case is A060356.
Labeled rooted trees are A000169.
Lone-child-avoiding rooted trees are A001678(n + 1).
Labeled topologically series-reduced rooted trees are A060313.
Labeled lone-child-avoiding unrooted trees are A108919.

Programs

  • Mathematica
    nn = 20; b = 1 + Sum[nn = n; n! Coefficient[Series[(Exp[x] - x)^n, {x, 0, nn}], x^n]*x^n/n!, {n,1, nn}]; c = Sum[a[n] x^n/n!, {n, 0, nn}]; sol = SolveAlways[b == Series[1/(1 - (c - x)), {x, 0, nn}], x]; Flatten[Table[a[n], {n, 0, nn}] /. sol]
    nn = 30; CoefficientList[Series[1+x-1/Sum[SeriesCoefficient[(E^x-x)^n,{x,0,n}]*x^n,{n,0,nn}],{x,0,nn}],x] * Range[0,nn]! (* Vaclav Kotesovec, Jan 30 2015 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
    Table[Length[Select[lrt[Range[n]],FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)

Formula

E.g.f.: A(x) satisfies 1/(1 - (A(x) - x)) = B(x) where B(x) is the e.g.f. for A231797.
a(n) ~ (1-exp(-1))^(n-1/2) * n^(n-1). - Vaclav Kotesovec, Jan 30 2015

A052321 Number of rooted trees with a forbidden limb of length 3.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 35, 81, 195, 473, 1171, 2924, 7396, 18848, 48446, 125311, 326145, 853188, 2242616, 5919197, 15683008, 41694334, 111195166, 297393668, 797475499, 2143631474, 5775002574, 15590201095, 42168292074, 114260967888, 310124721255, 843053354234
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.
Likely a duplicate of A003006. - R. J. Mathar, Mar 23 2012
Only first 10 terms match, but then a(11) = 1171, and A003006(11) = 1170. - Vladimir Reshetnikov, Mar 05 2019

Crossrefs

Cf. A002955, A002988-A002992, A003006 (first 10 terms match), A052318-A052329.
Column k=3 of A255636.

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=3, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> g(n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jun 26 2014
  • Mathematica
    g[n_] := g[n] = If[n==0, 1, Sum[DivisorSum[j, #*(g[#-1] - If[#==3, 1, 0])&] * g[n-j], {j, 1, n}]/n];
    a[n_] := g[n-1];
    Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Apr 04 2017, after Alois P. Heinz *)

Formula

a(n) satisfies a = SHIFT_RIGHT(EULER(a-b)) where b(3)=1, b(k)=0 if k != 3.
a(n) ~ c * d^n / n^(3/2), where d = 2.851157026715821487965080545784048..., c = 0.4192933669718878505916053142459... . - Vaclav Kotesovec, Aug 24 2014

A052328 Number of rooted trees with a forbidden limb of length 5.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 46, 110, 273, 684, 1747, 4505, 11763, 30956, 82153, 219437, 589747, 1593170, 4324445, 11787195, 32251520, 88548011, 243877256, 673605521, 1865445693, 5178574184, 14408195935, 40170674295, 112213616851
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=5, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> g(n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jul 04 2014
  • Mathematica
    g[n_] := g[n] = If[n==0, 1, Sum[Sum[d(g[d-1] - If[d==5, 1, 0]), {d, Divisors[j]}] g[n-j], {j, 1, n}]/n];
    a[n_] := g[n-1];
    Array[a, 35] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)

Formula

a(n) satisfies a = SHIFT_RIGHT(EULER(a-b)) where b(5)=1, b(k)=0 if k != 5.
a(n) ~ c * d^n / n^(3/2), where d = 2.944791657501974377513779510930324..., c = 0.43624554592719796037836168844839... . - Vaclav Kotesovec, Aug 25 2014

A360432 E.g.f. satisfies A(x) = x * exp(A(x) + x^2).

Original entry on oeis.org

0, 1, 2, 15, 112, 1225, 16896, 283759, 5623808, 128431377, 3321026560, 95915951791, 3060250165248, 106896447626137, 4057412577591296, 166284754020913935, 7318183421113532416, 344228133020323687201, 17233838271273426223104, 915000759922243030582735
Offset: 0

Views

Author

Seiichi Manyama, Feb 07 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-x*exp(x^2)))))

Formula

E.g.f.: -LambertW( -x*exp(x^2) ).
a(n) ~ sqrt(1+LambertW(2*exp(-2))) * 2^(n/2) * n^(n-1) / (exp(n) * (LambertW(2*exp(-2)))^(n/2)). - Vaclav Kotesovec, Feb 07 2023

A002989 Number of n-node trees with a forbidden limb of length 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 7, 14, 28, 61, 131, 297, 678, 1592, 3770, 9096, 22121, 54451, 135021, 337651, 849698, 2152048, 5479408, 14022947, 36048514, 93061268, 241160180, 627179689, 1636448181, 4282964600, 11241488853, 29584389474
Offset: 0

Views

Author

Keywords

Comments

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

References

  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=3, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 3, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2] - 1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052321.
a(n) ~ c * d^n / n^(5/2), where d = 2.851157026715821487965080545784..., c = 0.463162985533004672966744142107... . - Vaclav Kotesovec, Aug 24 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999
Showing 1-10 of 18 results. Next