cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A002845 Number of distinct values taken by 2^2^...^2 (with n 2's and parentheses inserted in all possible ways).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 36, 78, 171, 379, 851, 1928, 4396, 10087, 23273, 53948, 125608, 293543, 688366, 1619087, 3818818, 9029719, 21400706, 50828664, 120963298, 288405081, 688821573, 1647853491, 3948189131, 9473431479
Offset: 1

Views

Author

Keywords

Comments

a(n) <= A002955(n). - Max Alekseyev, Sep 23 2009

Examples

			From _M. F. Hasler_, Apr 17 2024: (Start)
The table with explicit lists of values starts as follows:
   n | distinct values of 2^...^2 with all possible parenthesizations
-----+---------------------------------------------------------------
   1 | 2
   2 | 2^2 = 4
   3 | (2^2)^2 = 2^(2^2) = 16
   4 | (2^2^2)^2 = 2^8 = 256, (2^2)^(2^2) = 2^(2^2^2) = 2^16 (= 65536)
   5 | 256^2 = 2^16, (2^16)^2 = 2^32, 2^256, 2^2^16 (~ 2*10^19728)
   6 | (2^16)^2 = 2^32, 2^64, 2^512, 2^2^16, 2^2^17, 2^2^32, 2^2^256, 2^2^2^16
   7 | 2^64, 2^128, 2^256, 2^1024, 2^2^17, 2^2^18, 2^2^32, 2^2^33, 2^2^64, 2^2^257,
     | 2^2^512, 2^2^2^16, 2^2^65537, 2^2^2^17, 2^2^2^32, 2^2^2^256, 2^2^2^2^16
  ...| ...
(When parentheses are omitted above, we use that ^ is right associative.) (End)
		

References

  • J. Q. Longyear, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    /* Define operators for numbers represented (recursively) as list of positions of bits 1. Illustration using the commands below: T = 3.bits; T.int */
    n.bits = vector(hammingweight(n), v,  n -= 1 << v= valuation(n, 2); v.bits)
    ONE = 1.bits; m.int = sum(i=1, #m, 1<=0])}
    {ADD(m, n, a=#m, b=#n)= if(!a, n, !b, m, a=b=1; until(a>#m|| b>#n, if(m[a]==n[b], until(a>=#m|| m[a]!=m[a+1]|| !#m=m[^a], m[a]=ADD(m[a],ONE)); b++, CMP(m[a], n[b])<0, a++, m=concat([m[1..a-1], [n[b]], m[a..#m]]); b++)); b>#n|| m=concat(m,n[b..#n]); m)}
    {CMP(m, n, a=#m, b=#n, c=0)= if(!b, a, !a, -1, while(!(c=CMP(m[a], n[b]))&& a--&& b--, ); if(c, c, 1-b))}
    {SUB(m, n, a=#n)= if(!a, m, my(b=a=1, c, i); while(a<=#m && b<=#n, if(0>c=CMP(m[a], n[b]), a++, c, i=[c=n[b]]; b++; while(m[a]!=c=ADD(c, ONE), if(b<=#n && c==n[b], b++, i=concat(i, [c]))); m=concat([m[1..a-1], i, m[a+1..#m]]); a += #i, m=m[^a]; b++)); m)}
    A2845 = List([[2.bits]]) /* List of values for each n */
    {A002845(n)= while(#A2845= 15. - M. F. Hasler, Apr 28 2024

Extensions

a(12)-a(13) corrected and a(14)-a(27) added by Jon E. Schoenfield, Oct 11 2008
a(28)-a(29) computed by Kirill Osenkov, added by Vladimir Reshetnikov, Feb 07 2019
a(30)-a(31) added by Sean A. Irvine, Feb 18 2019

A002988 Number of trimmed trees with n nodes.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 3, 6, 10, 21, 39, 82, 167, 360, 766, 1692, 3726, 8370, 18866, 43029, 98581, 227678, 528196, 1232541, 2888142, 6798293, 16061348, 38086682, 90607902, 216230205, 517482053, 1241778985, 2987268628, 7203242490
Offset: 0

Views

Author

Keywords

Comments

From Christian G. Bower, Dec 15 1999: (Start)
A trimmed tree is a tree with a forbidden limb of length 2.
A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps. (End)

References

  • K. L. McAvaney, personal communication.
  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=2, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 2, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is the g.f. of A002955. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(5/2), where d = 2.59952511060090659632378883695..., c = 0.3758284247032014502508501798... . - Vaclav Kotesovec, Aug 24 2014

Extensions

More terms from Christian G. Bower, Dec 15 1999

A052318 Number of labeled rooted trimmed trees with n nodes.

Original entry on oeis.org

1, 2, 3, 16, 145, 1536, 19579, 290816, 4942305, 94689280, 2020278931, 47523053568, 1222147737265, 34117226135552, 1027550555918475, 33213871550365696, 1146891651823112641, 42135941698113503232, 1641164216596258397347, 67550839668807638712320
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted trimmed tree is a tree with a forbidden limb of length 2.
A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n<=1 then x else convert(series(x* exp(A(n-1)-x^2), x,n), polynom) fi end: a:= n-> coeff(A(n+1), x,n)*n!: seq(a(n), n=1..25); # Alois P. Heinz, Aug 23 2008
  • Mathematica
    a[n_] := Sum[ Boole[ EvenQ[n-m]]*(m^((n+m)/2-2)/((n-m)/2)!)*((-1)^((n-m)/2)/(m-1)!), {m, 1, n}]*n!; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Sep 10 2012, after Vladimir Kruchinin *)
    Rest[CoefficientList[Series[-LambertW[-x/E^(x^2)],{x,0,20}],x]*Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • Maxima
    a(n):=sum((if mod(n-m,2)=0 then m^((n+m)/2-2)/((n-m)/2)!*(-1)^((n-m)/2) else 0)/(m-1)!,m,1,n); /* Vladimir Kruchinin, Aug 07 2012 */

Formula

E.g.f. satisfies A(x) = x*exp(A(x) - x^2).
E.g.f.: -LambertW(-x/exp(x^2)). - Vaclav Kotesovec, Jan 08 2014
a(n) ~ sqrt(1 + LambertW(-2*exp(-2))) * 2^(n/2) * n^(n-1) / (exp(n) * (-LambertW(-2*exp(-2)))^(n/2)). - Vaclav Kotesovec, Jan 08 2014

A052329 Number of rooted trees with a forbidden limb of length 6.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 47, 113, 281, 706, 1807, 4671, 12224, 32247, 85782, 229683, 618767, 1675618, 4559263, 12457483, 34168574, 94040433, 259637564, 718892281, 1995739380, 5553867981, 15490305017, 43293762352, 121235084565
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=6, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> g(n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jul 04 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 6, 1, 0]), {d, Divisors[j]} ]*g[n-j], {j, 1, n}]/n]; a[n_] := g[n-1]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

a(n) satisfies a=SHIFT_RIGHT(EULER(a-b)) where b(6)=1, b(k)=0 if k != 6.
a(n) ~ c * d^n / n^(3/2), where d = 2.95209316333202396584501452688304..., c = 0.43842619727838455589811980703038... . - Vaclav Kotesovec, Aug 25 2014

A002992 Number of n-node trees with a forbidden limb of length 6.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 10, 22, 45, 102, 226, 531, 1253, 3044, 7456, 18604, 46798, 119133, 305567, 790375, 2057523, 5390759, 14200122, 37598572, 100005401, 267131927, 716318650, 1927758155, 5205240762, 14098580633, 38296720823, 104308468102, 284822276099
Offset: 0

Views

Author

Keywords

Comments

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

References

  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=6, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 6, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052329.
a(n) ~ c * d^n / n^(5/2), where d = 2.95209316333202396584501452688304..., c = 0.52950413787119576841378912289... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999

A255636 Number A(n,k) of n-node rooted trees with a forbidden limb of length k; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 3, 4, 0, 1, 1, 2, 4, 7, 8, 0, 1, 1, 2, 4, 8, 15, 17, 0, 1, 1, 2, 4, 9, 18, 35, 36, 0, 1, 1, 2, 4, 9, 19, 43, 81, 79, 0, 1, 1, 2, 4, 9, 20, 46, 102, 195, 175, 0, 1, 1, 2, 4, 9, 20, 47, 110, 251, 473, 395, 0
Offset: 1

Views

Author

Alois P. Heinz, Feb 28 2015

Keywords

Comments

Any rootward k-node path starting at a leaf contains the root or a branching node.

Examples

			:    o      o        o      o    o       o      o    o
:  /(|)\    |       / \    /|\   |       |     / \   |
: o ooo o   o      o   o  o o o  o       o    o   o  o
:         /( )\   /|\    / \     |      / \   |      |
:        o o o o o o o  o   o    o     o   o  o      o
:                               /|\   / \    / \     |
:                              o o o o   o  o   o    o
: A(6,2) = 8                                        / \
:                                                  o   o
Square array A(n,k) begins:
  1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   2,   2,   2,   2,   2,   2,   2, ...
  0,   2,   3,   4,   4,   4,   4,   4,   4,   4, ...
  0,   4,   7,   8,   9,   9,   9,   9,   9,   9, ...
  0,   8,  15,  18,  19,  20,  20,  20,  20,  20, ...
  0,  17,  35,  43,  46,  47,  48,  48,  48,  48, ...
  0,  36,  81, 102, 110, 113, 114, 115, 115, 115, ...
  0,  79, 195, 251, 273, 281, 284, 285, 286, 286, ...
  0, 175, 473, 625, 684, 706, 714, 717, 718, 719, ...
		

Crossrefs

Main diagonal gives A000081.
Cf. A255704.

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
        end:
    A:= (n, k)-> g(n-1, k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[Sum[d*(g[d - 1, k] - If[d == k, 1, 0]), {d, Divisors[j]}]*g[n - j, k], {j, 1, n}]/n]; A[n_, k_] := g[n - 1, k]; Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A255704 Number T(n,k) of n-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 1, 1, 0, 8, 7, 3, 1, 1, 0, 17, 18, 8, 3, 1, 1, 0, 36, 45, 21, 8, 3, 1, 1, 0, 79, 116, 56, 22, 8, 3, 1, 1, 0, 175, 298, 152, 59, 22, 8, 3, 1, 1, 0, 395, 776, 413, 163, 60, 22, 8, 3, 1, 1, 0, 899, 2025, 1131, 450, 166, 60, 22, 8, 3, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2015

Keywords

Examples

			:    o      o     o         o     o     o     o
:  /( )\   /|\   / \       / \    |     |     |
: o o o o o o o o   o     o   o   o     o     o
: |       | |   |  / \   / \     /|\   / \    |
: o       o o   o o   o o   o   o o o o   o   o
:                       |       |     |   |  / \
:                       o       o     o   o o   o
:                                           |
: T(6,3) = 7                                o
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   1,   1;
  0,   4,   3,   1,  1;
  0,   8,   7,   3,  1,  1;
  0,  17,  18,   8,  3,  1, 1;
  0,  36,  45,  21,  8,  3, 1, 1;
  0,  79, 116,  56, 22,  8, 3, 1, 1;
  0, 175, 298, 152, 59, 22, 8, 3, 1, 1;
		

Crossrefs

Columns k=1-10 give: A063524, A002955 (for n>1), A318899, A318900, A318901, A318902, A318903, A318904, A318905, A318906.
Row sums give A000081.
T(2*n+1,n+1) gives A255705.
Cf. A255636.

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
        end:
    T:= (n, k)-> g(n-1, k) -`if`(k=1, 0, g(n-1, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..14);
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[#-1, k] - If[# == k, 1, 0])&] * g[n-j, k], {j, 1, n}]/n];
    T[n_, k_] := g[n-1, k] - If[k == 1, 0, g[n-1, k-1]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

T(n,1) = A255636(n,1), T(n,k) = A255636(n,k) - A255636(n,k-1) for k>1.

A052319 Number of increasing rooted trimmed trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 7, 28, 131, 720, 4513, 31824, 249513, 2151744, 20242983, 206313024, 2264425179, 26628836352, 334022337153, 4451717814528, 62820790592913, 935750983412736, 14672143677452679, 241555066200437760
Offset: 1

Views

Author

Christian G. Bower, Dec 11 1999

Keywords

Comments

In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.
A trimmed tree is a tree with a forbidden limb of length 2.
A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.
Number of permutations on [n+1] beginning with 12 and avoiding a consecutive 132 pattern (n>=1). For example, a(4)=2 counts 12345, 12453. - Ralf Stephan, Apr 25 2004

Crossrefs

Programs

  • Maple
    seq(n! * coeff(series(-log(1-sqrt(Pi/2)*erf(x/sqrt(2))), x, n+1), x, n), n=1..20) # Vaclav Kotesovec, Jan 07 2014
  • Mathematica
    Rest[CoefficientList[Series[-Log[1-Sqrt[Pi/2]*Erf[x/Sqrt[2]]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 07 2014 *)

Formula

E.g.f.: A(x) = 1/B(-x) where B'(x) is e.g.f. of A006882 and B(0) = 1.
E.g.f.: A(x) satisfies A'(x) = exp(A(x)-x^2/2).
E.g.f.: exp(-x^2/2)/(1-int[0..x, exp(-x^2/2)]). - Ralf Stephan, Apr 25 2004
E.g.f.: -log(1-sqrt(Pi/2)*erf(x/sqrt(2))). - Vaclav Kotesovec, Jan 07 2014
Limit n->infinity (a(n)/n!)^(1/n) = 1/(sqrt(2)*InverseErf(sqrt(2/Pi))) = 1/A240885 = 0.7839769312035474991... - Vaclav Kotesovec, Jan 07 2014
a(n) ~ (n-1)! / (sqrt(2)*InverseErf(sqrt(2/Pi)))^n. - Vaclav Kotesovec, Aug 22 2014

Extensions

Formula updated by Christian G. Bower, Mar 06 2001

A052321 Number of rooted trees with a forbidden limb of length 3.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 35, 81, 195, 473, 1171, 2924, 7396, 18848, 48446, 125311, 326145, 853188, 2242616, 5919197, 15683008, 41694334, 111195166, 297393668, 797475499, 2143631474, 5775002574, 15590201095, 42168292074, 114260967888, 310124721255, 843053354234
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.
Likely a duplicate of A003006. - R. J. Mathar, Mar 23 2012
Only first 10 terms match, but then a(11) = 1171, and A003006(11) = 1170. - Vladimir Reshetnikov, Mar 05 2019

Crossrefs

Cf. A002955, A002988-A002992, A003006 (first 10 terms match), A052318-A052329.
Column k=3 of A255636.

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=3, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> g(n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jun 26 2014
  • Mathematica
    g[n_] := g[n] = If[n==0, 1, Sum[DivisorSum[j, #*(g[#-1] - If[#==3, 1, 0])&] * g[n-j], {j, 1, n}]/n];
    a[n_] := g[n-1];
    Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Apr 04 2017, after Alois P. Heinz *)

Formula

a(n) satisfies a = SHIFT_RIGHT(EULER(a-b)) where b(3)=1, b(k)=0 if k != 3.
a(n) ~ c * d^n / n^(3/2), where d = 2.851157026715821487965080545784048..., c = 0.4192933669718878505916053142459... . - Vaclav Kotesovec, Aug 24 2014

A052328 Number of rooted trees with a forbidden limb of length 5.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 46, 110, 273, 684, 1747, 4505, 11763, 30956, 82153, 219437, 589747, 1593170, 4324445, 11787195, 32251520, 88548011, 243877256, 673605521, 1865445693, 5178574184, 14408195935, 40170674295, 112213616851
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=5, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> g(n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jul 04 2014
  • Mathematica
    g[n_] := g[n] = If[n==0, 1, Sum[Sum[d(g[d-1] - If[d==5, 1, 0]), {d, Divisors[j]}] g[n-j], {j, 1, n}]/n];
    a[n_] := g[n-1];
    Array[a, 35] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)

Formula

a(n) satisfies a = SHIFT_RIGHT(EULER(a-b)) where b(5)=1, b(k)=0 if k != 5.
a(n) ~ c * d^n / n^(3/2), where d = 2.944791657501974377513779510930324..., c = 0.43624554592719796037836168844839... . - Vaclav Kotesovec, Aug 25 2014
Showing 1-10 of 20 results. Next