cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052449 a(n) = 1 + Product_{k=1..n} Fibonacci(k).

Original entry on oeis.org

2, 2, 3, 7, 31, 241, 3121, 65521, 2227681, 122522401, 10904493601, 1570247078401, 365867569267201, 137932073613734401, 84138564904377984001, 83044763560621070208001, 132622487406311849122176001, 342696507457909818131702784001
Offset: 1

Views

Author

Keywords

Comments

The first 8 terms are primes. - Jonathan Vos Post, Dec 08 2012
a(22) and a(28) are also primes. - Robert Israel, Jun 10 2015
There are no further primes up to a(300). - Harvey P. Dale, Feb 28 2023

Crossrefs

Programs

  • GAP
    List([1..20], n-> 1+Product([1..n], j-> Fibonacci(j)) ); # G. C. Greubel, Sep 26 2019
  • Magma
    [1+(&*[Fibonacci(j): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Sep 26 2019
    
  • Maple
    seq(1+mul(combinat:-fibonacci(j),j=1..n), n=1..30); # Robert Israel, Jun 10 2015
  • Mathematica
    1 + Table[Times @@ Fibonacci[Range[n]], {n, 20}] (* T. D. Noe, Dec 29 2012 *)
    FoldList[Times,Fibonacci[Range[20]]]+1 (* Harvey P. Dale, Feb 28 2023 *)
  • PARI
    vector(20, n, 1+prod(j=1,n, fibonacci(j))) \\ G. C. Greubel, Sep 26 2019
    
  • Sage
    [1+product(fibonacci(j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Sep 26 2019
    

Formula

a(n) = A003266(n)+1. - Robert Israel, Jun 10 2015