cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052531 If n is even then 2^n+1 otherwise 2^n.

Original entry on oeis.org

2, 2, 5, 8, 17, 32, 65, 128, 257, 512, 1025, 2048, 4097, 8192, 16385, 32768, 65537, 131072, 262145, 524288, 1048577, 2097152, 4194305, 8388608, 16777217, 33554432, 67108865, 134217728, 268435457, 536870912, 1073741825, 2147483648
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • GAP
    a:=[2,2,5];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    [2^n + (1+(-1)^n)/2: n in [0..30]]; // G. C. Greubel, May 09 2019
    
  • Maple
    spec:= [S,{S=Union(Sequence(Union(Z,Z)),Sequence(Prod(Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(2^n + (1+(-1)^n)/2, n=0..30); # G. C. Greubel, Oct 17 2019
  • Mathematica
    2^# + (1 - Mod[#, 2]) & /@ Range[0, 40] (* Peter Pein, Jan 11 2008 *)
    Table[If[EvenQ[n], 2^n + 1, 2^n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010, modified by G. C. Greubel, May 09 2019 *)
    Table[2^n + Boole[EvenQ[n]], {n, 0, 31}] (* Alonso del Arte, May 09 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((2-2*x-x^2)/((1-x^2)*(1-2*x))) \\ G. C. Greubel, May 09 2019
    
  • PARI
    a(n) = 1<David A. Corneth, Oct 18 2019
    
  • Sage
    [2^n + (1+(-1)^n)/2 for n in (0..30)] # G. C. Greubel, May 09 2019
    

Formula

G.f.: (2 - 2*x - x^2)/( (1-x^2)*(1-2*x) ).
a(n) = a(n-1) + 2*a(n-2) - 1, with a(0) = 2, a(1) = 2, a(2) = 5.
a(n) = 2^n + Sum_{alpha = RootOf(-1+x^2)} alpha^(-n)/2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), with a(0) = 2, a(1) = 2, a(2) = 5. - G. C. Greubel, May 09 2019
a(n) = 2^n + (1 + (-1)^n)/2. - G. C. Greubel, Oct 17 2019
E.g.f.: exp(2*x) + cosh(x). - Stefano Spezia, Oct 18 2019

Extensions

More terms from James Sellers, Jun 05 2000
Better definition from Peter Pein (petsie(AT)dordos.net), Jan 11 2008