cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052539 a(n) = 4^n + 1.

Original entry on oeis.org

2, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The sequence is a Lucas sequence V(P,Q) with P = 5 and Q = 4, so if n is a prime number, then V_n(5,4) - 5 is divisible by n. The smallest pseudoprime q which divides V_q(5,4) - 5 is 15.
Also the edge cover number of the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Sep 20 2017
First bisection of A000051, A049332, A052531 and A014551. - Klaus Purath, Sep 23 2020

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n+1); # G. C. Greubel, May 09 2019
  • Magma
    [4^n+1: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
    
  • Maple
    spec := [S,{S=Union(Sequence(Union(Z,Z,Z,Z)),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
    A052539:=n->4^n + 1; seq(A052539(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
  • Mathematica
    Table[4^n + 1, {n, 0, 30}]
    (* From Eric W. Weisstein, Sep 20 2017 *)
    4^Range[0, 30] + 1
    LinearRecurrence[{5, -4}, {2, 5}, 30]
    CoefficientList[Series[(2-5x)/(1-5x+4x^2), {x, 0, 30}], x] (* End *)
  • PARI
    a(n)=4^n+1 \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    [4^n+1 for n in (0..30)] # G. C. Greubel, May 09 2019
    

Formula

a(n) = 4^n + 1.
a(n) = 4*a(n-1) - 3 = 5*a(n-1) - 4*a(n-2).
G.f.: (2 - 5*x)/((1 - 4*x)*(1 - x)).
E.g.f.: exp(x) + exp(4*x). - Mohammad K. Azarian, Jan 02 2009
From Klaus Purath, Sep 23 2020: (Start)
a(n) = 3*4^(n-1) + a(n-1).
a(n) = (a(n-1)^2 + 9*4^(n-2))/a(n-2).
a(n) = A178675(n) - 3. (End)

A352633 Lexicographically earliest sequence of distinct positive integers such for any n > 0, a(n) and a(n+1) are coprime and have no common 1-bits in their binary expansions.

Original entry on oeis.org

1, 2, 5, 8, 3, 4, 9, 16, 7, 24, 35, 12, 17, 6, 25, 32, 11, 20, 33, 10, 21, 34, 13, 18, 37, 26, 69, 40, 19, 36, 65, 14, 81, 38, 73, 22, 41, 64, 15, 112, 129, 28, 67, 44, 83, 128, 23, 72, 49, 66, 29, 96, 31, 160, 27, 68, 43, 80, 39, 88, 131, 48, 71, 56, 135, 104
Offset: 1

Views

Author

Rémy Sigrist, May 07 2022

Keywords

Comments

This sequence combines features of A000027 (where two consecutive terms are coprime) and of A109812 (where two consecutive terms have no common 1-bits in their binary expansions).
For any n > 0, n and a(n) have the same parity.
The sequence is well defined:
- after an odd term v: we can extend the sequence with a power of 2 greater than any previous term,
- after an even term v < 2^k: we can extend the sequence with a prime number of the form 1 + t*2^k (Dirichlet's theorem on arithmetic progressions guarantees us that there is an infinity of such prime numbers).
This sequence is a permutation of the positive integers (with inverse A353604):
- the sequence is clearly unbounded,
- so we have even terms of infinitely many different binary lengths,
- the first even term with binary length w > 1 is necessarily 2^(w-1),
- so we have infinitely many powers of 2 in the sequence,
- so eventually all odd numbers will appear in the sequence,
- and all prime numbers will appear in the sequence,
- and eventually any even number v < 2^k must appear in the sequence (for instance after a prime number of the form 1 + t*2^k).

Examples

			The first terms, alongside their binary expansion and distinct prime factors, are:
  n   a(n)  bin(a(n))  dpf(a(n))
  --  ----  ---------  ----------
   1     1          1  None
   2     2         10  2
   3     5        101      5
   4     8       1000  2
   5     3         11    3
   6     4        100  2
   7     9       1001    3
   8    16      10000  2
   9     7        111        7
  10    24      11000  2 3
  11    35     100011      5 7
  12    12       1100  2 3
  13    17      10001          17
  14     6        110  2 3
		

Crossrefs

Cf. A000027, A052531, A109812, inverse (A353604).

Programs

  • PARI
    { s=0; v=1; for (n=1, 66, print1 (v", "); s+=2^v; for (w=1, oo, if (!bittest(s, w) && bitand(v,w)==0 && gcd(v,w)==1, v=w; break))) }

A052929 Expansion of g.f. (2-3*x-x^2)/((1-x^2)*(1-3*x)).

Original entry on oeis.org

2, 3, 10, 27, 82, 243, 730, 2187, 6562, 19683, 59050, 177147, 531442, 1594323, 4782970, 14348907, 43046722, 129140163, 387420490, 1162261467, 3486784402, 10460353203, 31381059610, 94143178827, 282429536482, 847288609443, 2541865828330, 7625597484987, 22876792454962
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A052531: 2^n + (1+(-1)^n)/2.

Programs

  • GAP
    List([0..30], n-> 3^n + (1+(-1)^n)/2 ); # G. C. Greubel, Oct 17 2019
  • Magma
    [&+[(-1)^k+2^k*Binomial(n,k): k in [0..n]]: n in [0..30]]; // Bruno Berselli, Aug 27 2013
    
  • Maple
    spec:= [S, {S=Union(Sequence(Prod(Z,Z)), Sequence(Union(Z,Z,Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    seq(3^n + (1+(-1)^n)/2, n=0..30); # G. C. Greubel, Oct 17 2019
  • Mathematica
    Table[3^n + (1+(-1)^n)/2, {n, 0, 30}] (* Bruno Berselli, Aug 27 2013 *)
    LinearRecurrence[{3, 1, -3}, {2, 3, 10}, 40] (* Vincenzo Librandi, Mar 09 2018 *)
    Table[3^n + Fibonacci[n+1,0], {n,0,30}] (* G. C. Greubel, Oct 17 2019 *)
  • PARI
    x='x+O('x^30); Vec((2-3*x-x^2)/((1-x^2)*(1-3*x))) \\ Altug Alkan, Mar 09 2018
    
  • Sage
    [3^n + (1+(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Oct 17 2019
    

Formula

G.f.: (2-3*x-x^2)/((1-x^2)*(1-3*x)).
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3), a(0)=2, a(1)=3, a(2)=10.
a(n) = 3^n + Sum_{alpha=RootOf(-1+z^2)} alpha^(-n)/2.
a(n) = 2*A033113(n+1) - 3*A033113(n) - A033113(n-1). - R. J. Mathar, Nov 28 2011
From Bruno Berselli, Aug 27 2013: (Start)
a(n) = 3^n + (1 + (-1)^n)/2.
a(n) = Sum_{k=0..n} (-1)^k + 2^k*binomial(n,k). (End)
E.g.f.: exp(3*x) + cosh(x). - Elmo R. Oliveira, Mar 16 2025

Extensions

More terms from James Sellers, Jun 05 2000

A052647 E.g.f. (2-2x-x^2)/((1-2x)(1-x^2)).

Original entry on oeis.org

2, 2, 10, 48, 408, 3840, 46800, 645120, 10362240, 185794560, 3719520000, 81749606400, 1962469555200, 51011754393600, 1428416301312000, 42849873690624000, 1371216880889856000, 46620662575398912000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Union(Sequence(Prod(Z,Z)),Sequence(Union(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

E.g.f.: -(-2+x^2+2*x)/(-1+2*x)/(-1+x^2)
Recurrence: {a(1)=2, a(2)=10, a(0)=2, (12+2*n^3+12*n^2+22*n)*a(n)+(-n^2-5*n-6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)=0}
(2^n+Sum(1/2*_alpha^(-n), _alpha=RootOf(-1+_Z^2)))*n!
n!*[2^n+(n mod 2)].
a(n) = n!*A052531(n). - R. J. Mathar, Nov 27 2011
Showing 1-4 of 4 results.