A052582 a(n) = 2*n*n!.
0, 2, 8, 36, 192, 1200, 8640, 70560, 645120, 6531840, 72576000, 878169600, 11496038400, 161902540800, 2440992153600, 39230231040000, 669529276416000, 12093372555264000, 230485453406208000, 4622513815535616000, 97316080327065600000, 2145819571211796480000
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..250
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 526.
- Eric Weisstein's World of Mathematics, Exponential Integral.
Programs
-
Haskell
a052582 n = a052582_list !! n a052582_list = 0 : 2 : zipWith div (zipWith (*) (tail a052582_list) (drop 2 a000290_list)) [1..] -- Reinhard Zumkeller, Nov 12 2011
-
Maple
spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Union(Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
a[ n_] := If[ n<0, 0, n! SeriesCoefficient[ 2 x / (1 - x)^2, {x, 0, n}]]; (* Michael Somos, Oct 20 2011 *) a[ n_] := If[ n<0, 0, 2 n n!]; (* Michael Somos, Oct 20 2011 *)
-
PARI
{a(n) = if( n<0, 0, 2 * n * n!)}; /* Michael Somos, Oct 20 2011 */
Formula
E.g.f.: 2*x / (1 - x)^2.
Recurrence: {a(0)=0, a(1)=2, (-n^2-2*n-1)*a(n)+a(n+1)*n=0.}.
a(n) = A138770(n+2,1). - Emeric Deutsch, Apr 06 2008
a(n) = (a(n-1)^2 - 2 * a(n-2)^2 + a(n-2) * a(n-3) - 4 * a(n-1) * a(n-3)) / (a(n-2) - a(n-3)) if n>2. - Michael Somos, Oct 20 2011
a(n) = 2*n*n!. - Gary Detlefs, Sep 16 2010
a(n+1) = a(n) * (n+1)^2 / n. - Reinhard Zumkeller, Nov 12 2011
0 = a(n)*(+a(n+1) -4*a(n+2) +a(n+3)) +a(n+1)*(+2*a(n+1) -a(n+3)) + a(n+2)*(+a(n+2)) if n>=0. - Michael Somos, Jun 26 2017
From Amiram Eldar, Feb 14 2021: (Start)
Sum_{n>=1} 1/a(n) = (Ei(1) - gamma)/2 = (A091725 - A001620)/2, where Ei(x) is the exponential integral.
a(n) = 2 * A001563(n). - Alois P. Heinz, Sep 03 2024
Comments