A052704 Apart from the leading term, a(n) = Catalan(n-1)*4^(n-1).
0, 1, 4, 32, 320, 3584, 43008, 540672, 7028736, 93716480, 1274544128, 17611882496, 246566354944, 3489862254592, 49855175065600, 717914520944640, 10409760553697280, 151860036312760320, 2227280532587151360, 32823081532863283200, 485781606686376591360, 7217326727911880785920
Offset: 0
Examples
x + 4*x^2 + 32*x^3 + 320*x^4 + 3584*x^5 + 43008*x^6 + 540672*x^7 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- M. Bousquet-Mélou, Walks on the slit plane: other approaches, Advances in Applied Math. 27 (2001), 243-288.
- M. Bousquet-Mélou and G. Schaeffer, Walks on the Slit Plane, arXiv:math/0012230 [math.CO], 2000.
- M. Bousquet-Mélou and G. Schaeffer, Walks on the slit plane, Probab. Theory Related Fields 124 (2002), 305-344.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 658.
Crossrefs
See A000108 for Catalan numbers.
Programs
-
Maple
spec := [S,{B=Prod(C,C),S=Union(B,Z),C=Union(S,B,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
InverseSeries[Series[y-4*y^2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 07 2000 *) Join[{0},Table[CatalanNumber[n-1]4^(n-1),{n,20}]] (* Harvey P. Dale, Dec 01 2013 *)
-
PARI
{a(n) = if( n<1, 0, n--; 4^n * (2 * n)! / n! / (n + 1)!)}
-
PARI
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = 4 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
Formula
a(n) = 16^n*Gamma(n+1/2)/Gamma(n+2)/Pi^(1/2).
G.f.: (1 - sqrt(1 - 16*x)) / 8.
D-finite with recurrence a(n) = 8*(2-3/n)*a(n-1), n>1.
a(0)=0, a(1)=1, a(n) = 4*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n+1) = (1/(8*Pi))*Integral_{x=0..16} x^n*sqrt(x*(16-x))/x dx; a(n+1) = (1/(8*Pi))*Integral_{x=-4..4} x^(2*n)*sqrt(4-x)*sqrt(4+x)*dt. - Paul Barry, Oct 01 2007
a(n) = upper left term of M^(n-1), where M is an infinite matrix as follows:
4, 4, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
4, 4, 4, 4, 0, 0, ...
4, 4, 4, 4, 4, 0, ...
4, 4, 4, 4, 4, 4, ...
...
- Gary W. Adamson, Jul 13 2011
a(n) = 4 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
a(n) ~ 16^(n-1)/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Dec 04 2016
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 88/75 + 128*arctan(1/sqrt(15)) / (75*sqrt(15)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 248/289 - 384*arctanh(1/sqrt(17)) / (289*sqrt(17)). (End)
Comments