cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A162990 Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).

Original entry on oeis.org

4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Comments

The hypergeometric function 3F2([1,n+1,n+1],[n+2,n+2],z) = (n+1)^2*Li2(z)/z^(n+1) - MN(z;n)/(n!^2*z^n) for n >= 1, with Li2(z) the dilogarithm. The polynomial coefficients of MN(z;n) lead to the triangle given above.
We observe that 3F2([1,1,1],[2,2],z) = Li2(z)/z and that 3F2([1,0,0],[1,1],z) = 1.
The generating function for the EG1[3,n] coefficients of the EG1 matrix, see A162005, is GFEG1(z;m=2) = 1/(1-z)*(3*zeta(3)/2-2*z*log(2)* 3F2([1,1,1],[2,2],z) + sum((2^(1-2*n)* factorial(2*n-1)*z^(n+1)*3F2([1,n+1,n+1],[n+2,n+2],z))/(factorial(n+1)^2), n=1..infinity)).
The zeros of the MN(z;n) polynomials for larger values of n get ever closer to the unit circle and resemble the full moon, hence we propose to call the MN(z;n) the moon polynomials.

Examples

			The first few rows of the triangle are:
  [4]
  [36, 9]
  [576, 144, 64]
  [14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
  MN(z;n=1) = 4
  MN(z;n=2) = 36 + 9*z
  MN(z;n=3) = 576 + 144*z + 64*z^2
  MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
		

References

  • Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.

Crossrefs

A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A162991 and A162992 equal the first and second right hand columns.
A001048, A052747, A052759, A052778, A052794 are related to the square root of the first five right hand columns.
A001044, A162993 and A162994 equal the first, second and third left hand columns.
A000142, A001710, A002301, A133799, A129923, A001715 are related to the square root of the first six left hand columns.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
A129202(n)/A129203(n) = (n+1)^2*Li2(z=1)/(Pi^2) = (n+1)^2/6.
Cf. A002378 and A035287.

Programs

  • Maple
    a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
  • Mathematica
    Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)

Formula

a(n,m) = ((n+1)!/m)^2 for n >= 1 and 1 <= m <= n.

A052754 Expansion of e.g.f.: (log(1-x))^2*x^2.

Original entry on oeis.org

0, 0, 0, 0, 24, 120, 660, 4200, 30688, 254016, 2352240, 24108480, 271016064, 3316135680, 43877957760, 624306009600, 9505324339200, 154205312163840, 2655567756979200, 48382249157222400, 929788248840192000, 18796669969158144000, 398766195659497881600
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Magma
    I:=[24,120]; [0,0,0,0] cat [n le 2 select I[n] else (n*(n+3)*(2*n-1)*Self(n-1) - (n-1)^2*(n+2)*(n+3)*Self(n-2))/(n*(n+1)): n in [1..30]]; // G. C. Greubel, Sep 05 2018
  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(B,B,Z,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(Log[1-x])^2*x^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
    Join[{0,0,0,0}, RecurrenceTable[{a[4] == 24, a[5] == 120, (n^4 - 6*n^2 - n^3 + 4*n + 8)*a[n] + (7*n - 2*n^3 + n^2 - 6)*a[n + 1] == -(n^2 - n)*a[n + 2]}, a, {n, 4, 30}]] (* G. C. Greubel, Sep 05 2018 *)
  • PARI
    x='x+O('x^30); concat(vector(4), Vec(serlaplace(log(-1/(-1+x))^2* x^2))) \\ G. C. Greubel, Sep 05 2018
    
  • PARI
    a(n)={if(n>=2, 2*n*(n-1)*abs(stirling(n-2,2,1)), 0)} \\ Andrew Howroyd, Aug 08 2020
    

Formula

E.g.f.: log(-1/(-1+x))^2*x^2.
Recurrence: a(1)=0, a(2)=0, a(3)=0, a(4)=24, (n^4-6*n^2-n^3+4*n+8)*a(n) + (7*n-2*n^3+n^2-6)*a(n+1) + (n^2-n)*a(n+2) = 0.
a(n) ~ (n-1)! * 2*(log(n) + gamma), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 01 2013
a(n) = n*A052745(n-1) = 2*n*(n-1)*abs(Stirling1(n-2,2)) for n >= 2. - Andrew Howroyd, Aug 08 2020

Extensions

New name using e.g.f., Vaclav Kotesovec, Oct 01 2013

A052778 E.g.f.: x^4*log(-1/(-1+x)).

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 360, 1680, 10080, 72576, 604800, 5702400, 59875200, 691891200, 8717829120, 118879488000, 1743565824000, 27360571392000, 457312407552000, 8109673360588800, 152056375511040000, 3005349539512320000, 62444484876533760000, 1360632459941314560000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    a[n_] := If[n < 5, 0, n!/(n - 4)]; Array[a, 20, 0] (* Amiram Eldar, Oct 07 2020 *)
    With[{nn=30},CoefficientList[Series[x^4 Log[-1/(x-1)],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 28 2021 *)

Formula

E.g.f.: x^4*log(-1/(-1+x)).
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=120, (-n^2+3*n+4)*a(n) + (n-3)*a(n+1)}.
a(n) = n! / (n-4) (n > 4). - Olivier Gérard, Jun 13 2001
Sum_{n>=5} 1/a(n) = 49/6 - 3*e. - Amiram Eldar, Oct 07 2020
Sum_{n>=5} (-1)^(n+1)/a(n) = 5/e - 11/6. - Amiram Eldar, Aug 20 2022

Extensions

New name using e.g.f. from Vaclav Kotesovec, Oct 07 2020

A052794 E.g.f.: -x^5*log(1-x).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 2520, 13440, 90720, 725760, 6652800, 68428800, 778377600, 9686476800, 130767436800, 1902071808000, 29640619008000, 492490285056000, 8688935743488000, 162193467211776000, 3193183885731840000, 66117689869271040000, 1436223152160276480000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(Z,Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    a[n_] := If[n < 6, 0, n!/(n - 5)]; Array[a, 20, 0] (* Amiram Eldar, Oct 07 2020 *)

Formula

E.g.f.: x^5*log(-1/(-1+x)).
Recurrence: a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=0, a(6)=720, (-n^2+4*n+5)*a(n) + (-4+n)*a(n+1)=0.
From Amiram Eldar, Oct 07 2020: (Start)
a(n) = n! / (n-5) for n > 5.
Sum_{n>=6} 1/a(n) = 87/8 - 4*e. (End)
Sum_{n>=6} (-1)^n/a(n) = 53/24 - 6/e. - Amiram Eldar, Aug 20 2022

A058298 Triangle n!/(n-k), 1 <= k < n, read by rows.

Original entry on oeis.org

2, 3, 6, 8, 12, 24, 30, 40, 60, 120, 144, 180, 240, 360, 720, 840, 1008, 1260, 1680, 2520, 5040, 5760, 6720, 8064, 10080, 13440, 20160, 40320, 45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880, 403200, 453600, 518400, 604800, 725760, 907200, 1209600, 1814400, 3628800
Offset: 2

Views

Author

Leroy Quet, Dec 07 2000

Keywords

Comments

Together with 1, numbers n such that n divides k! if and only if k! >= n. - Charles R Greathouse IV, Aug 16 2016

Examples

			Triangle begins:
      2;
      3,     6;
      8,    12,    24;
     30,    40,    60,   120;
    144,   180,   240,   360,   720;
    840,  1008,  1260,  1680,  2520,   5040;
   5760,  6720,  8064, 10080, 13440,  20160,  40320;
  45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880;
  ...
		

Crossrefs

Columns k=1..5 are A001048(n-1), A052747, A052759, A052778, A052794.
Row sums are A052881.

Programs

  • Mathematica
    Flatten[Table[n!/(n-k),{n,2,10},{k,n-1}]] (* Harvey P. Dale, Jul 23 2014 *)
  • PARI
    T(n,k)={if(kAndrew Howroyd, Aug 08 2020

Formula

Sum_{n>=2} Sum_{k=1..n-1} 1/T(n, k) = e/2 (A019739). - Amiram Eldar, Jun 29 2025

A092824 Farey-factorial numerators.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 18, 24, 30, 40, 48, 60, 72, 80, 90, 96, 120, 144, 180, 240, 288, 360, 432, 480, 540, 576, 600, 720, 840, 1008, 1260, 1440, 1680, 2016, 2160, 2520, 2880, 3024, 3360, 3600, 3780, 4032, 4200, 4320, 5040, 5760, 6720, 8064, 10080
Offset: 1

Views

Author

Clark Kimberling, Mar 06 2004

Keywords

Comments

The last number in the n-th segment is n!. Let f(n) be the first number in segment n; except for initial terms, f is A001048 and A059171. Let g(n) be the second number in segment n; except for initial terms, g is A052747. Except for the initial terms, the number of numbers in segment n is given by A015614.

Examples

			The sequence begins with these segments:
  1
  2
  3 4 6
  8 12 16 18 24
For the next segment, start with these Farey fractions of order 5:
  1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 5/5.
Multiply these by 5! to get
  30 40 48 60 72 80 90 96 120.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := n! * Table[a/b, {b, 1, n}, {a, 1, b}] // Flatten // Union // Rest; Flatten[Table[f[n], {n, 1, 8}] /. {} -> {1}][[1 ;; 51]] (* Jean-François Alcover, May 18 2011 *)

Formula

Let S(n) be the set of integers an!/b, where a/b ranges through the positive Farey fractions of order n. A092824 is the increasing sequence of integers in the union of the sets S(n), for n>=1.

A153805 Decimal expansion of 3-e.

Original entry on oeis.org

2, 8, 1, 7, 1, 8, 1, 7, 1, 5, 4, 0, 9, 5, 4, 7, 6, 4, 6, 3, 9, 7, 1, 2, 5, 2, 8, 6, 4, 7, 3, 3, 7, 5, 0, 2, 2, 4, 2, 7, 5, 2, 9, 0, 6, 3, 0, 0, 0, 4, 0, 4, 2, 5, 0, 3, 3, 0, 3, 2, 3, 7, 2, 2, 7, 5, 9, 2, 3, 3, 6, 9, 6, 4, 6, 4, 5, 2, 4, 0, 5, 4, 2, 8, 6, 1, 7, 8, 2, 1, 4, 7, 4, 8, 3, 3, 5, 7, 2, 5, 7, 2, 5, 3
Offset: 0

Views

Author

Omar E. Pol, Jan 28 2009

Keywords

Examples

			0.2817181715409547646397125286473375...
		

Crossrefs

Cf. A001113, A052747, A098916. Essentially the same as A121239.

Programs

  • Mathematica
    RealDigits[3 - E, 10, 150][[1]] (* Harvey P. Dale, Nov 29 2011 *)

Formula

From Amiram Eldar, Aug 06 2020: (Start)
Equals Sum_{k>=0} k/(k + 2)!.
Equals Sum_{k>=0} 1/(k! * (k + 2) * (k + 3)) = Sum_{k>=3} 1/A052747(k).
Equals Sum_{k>=2} 1/(k! * k * (k - 1)) = Sum_{k>=4} 1/A098916(k). (End)
Area between log(x) and log(x)^2, i.e., Integral_{x=1..exp(1)} (log(x) - log(x)^2) dx. - Martin Renner, May 17 2022

A162992 The second right hand column of triangle A162990.

Original entry on oeis.org

36, 144, 1600, 32400, 1016064, 45158400, 2687385600, 205752960000, 19670999040000, 2294425328025600, 320461058211840000, 52778155948277760000, 10118415696592896000000, 2233485391313240064000000
Offset: 2

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Crossrefs

A052747(n+1) equals the square root of a(n).
A162991 is the first right hand column of triangle A162990.

Programs

  • Mathematica
    Array[((#+1)!/(#-1))^2 &, 20, 2] (* Paolo Xausa, Apr 01 2024 *)

Formula

a(n) = ((n+1)!/(n-1))^2 for n = 2, 3, ... .
a(n) = A052747(n+1)^2.

A271376 Integers n such that n!/(n-2) + 1 is prime.

Original entry on oeis.org

3, 4, 5, 6, 7, 10, 12, 13, 21, 24, 37, 64, 68, 136, 169, 216, 276, 435, 617, 753, 1722, 1775, 2762, 3974, 5006, 5931, 7480, 11442, 11896, 13200, 13534, 23240, 27971, 31867
Offset: 1

Views

Author

Altug Alkan, Apr 05 2016

Keywords

Comments

Corresponding primes are 7, 13, 41, 181, 1009, 453601, ...

Examples

			3 is a term because 2*3 + 1 = 7 is prime.
4 is a term because 1*3*4 + 1 = 13 is prime.
5 is a term because 1*2*4*5 + 1 = 41 is prime.
6 is a term because 1*2*3*5*6 + 1 = 181 is prime.
7 is a term because 1*2*3*4*6*7 + 1 = 1009 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..500] | IsPrime(Factorial(n)  div (n-2) + 1)]; // Vincenzo Librandi, Apr 07 2016
  • Mathematica
    Select[Range[3, 2000], PrimeQ[( #! / (# - 2) + 1)] &] (* Vincenzo Librandi, Apr 07 2016 *)
  • PARI
    lista(nn) = for(n=3, nn, if(ispseudoprime(n!/(n-2)+1), print1(n, ", ")));
    
  • PFGW
    ABC2 $a!/($a-2) + 1
    a: from 3 to 100000
    

Extensions

a(23) from Charles R Greathouse IV, Apr 05 2016
a(24)-a(27) from Charles R Greathouse IV, Apr 06 2016
a(28)-a(32) from Charles R Greathouse IV, Apr 18 2016
a(33) from Charles R Greathouse IV, Apr 30 2016
a(34) from Charles R Greathouse IV, May 09 2016

A291322 Numbers k such that k!/(k-2) - 1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 18, 21, 23, 26, 46, 70, 83, 156, 553, 591, 741, 790, 1430, 2139, 5509, 11429, 11881, 14343
Offset: 1

Views

Author

Amiram Eldar and Altug Alkan, Aug 22 2017

Keywords

Comments

Corresponding primes are 5, 11, 179, 6719, 51839, 453599, ...
Initial terms common with A271376 (that generate twin primes): 3, 4, 6, 10, 21.
Union of this sequence and A271376 is the sequence {3, 4, 5, 6, 7, 8, 9, 10, 12, 13, ...}.

Examples

			3 is a term because 2*3 - 1 = 5 is prime.
4 is a term because 1*3*4 - 1 = 11 is prime.
6 is a term because 1*2*3*5*6 - 1 = 179 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..1000] | IsPrime(Factorial(n)  div (n-2) - 1)];
  • Mathematica
    Select[Range[3, 6000], PrimeQ[( #! / (# - 2) - 1)] &]
  • PARI
    lista(nn) = for(n=3, nn, if(ispseudoprime(n!/(n-2)-1), print1(n, ", ")));
    
  • PFGW
    ABC2 $a!/($a-2) - 1
    a: from 3 to 6000
    

Extensions

a(22)-a(23) from Giovanni Resta, Aug 23 2017
a(24) from Michael S. Branicky, Dec 31 2024
Showing 1-10 of 10 results.