cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A242249 Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0
Offset: 0

Views

Author

Alois P. Heinz, May 09 2014

Keywords

Comments

From Vaclav Kotesovec, Aug 26 2014: (Start)
Column k > 0 is asymptotic to c(k) * d(k)^n / n^(3/2), where constants c(k) and d(k) are dependent only on k. Conjecture: d(k) ~ k * exp(1). Numerically:
d(1) = 2.9557652856519949747148175... (A051491)
d(2) = 5.6465426162329497128927135... (A245870)
d(3) = 8.3560268792959953682760695...
d(4) = 11.0699628777593263124193026...
d(5) = 13.7856511100846851989303249...
d(6) = 16.5022088446930015657112211...
d(7) = 19.2192613290638657575973462...
d(8) = 21.9366222112987115910888213...
d(9) = 24.6541883249893084812976812...
d(10) = 27.3718979186642404090999595...
d(100) = 272.0126359583480733207362718...
d(101) = 274.7309127032967881125015217...
d(200) = 543.8405620978790523837823296...
d(201) = 546.5588426492458787468860222...
d(101)-d(100) = 2.718276744...
d(201)-d(200) = 2.718280551...
(End)

Examples

			Square array A(n,k) begins:
  0,  0,    0,     0,      0,      0,       0,       0, ...
  1,  1,    1,     1,      1,      1,       1,       1, ...
  0,  1,    2,     3,      4,      5,       6,       7, ...
  0,  2,    7,    15,     26,     40,      57,      77, ...
  0,  4,   26,    82,    188,    360,     614,     966, ...
  0,  9,  107,   495,   1499,   3570,    7284,   13342, ...
  0, 20,  458,  3144,  12628,  37476,   91566,  195384, ...
  0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...
		

Crossrefs

Rows n=0-3 give: A000004, A000012, A001477, A005449.
Lower diagonal gives A242375.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
          A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)
  • PARI
    \\ ColGf gives column generating function
    ColGf(N,k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}
    Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018

Formula

G.f. for column k: x*Product_{n>=1} 1/(1 - x^n)^(k*A(n,k)). - Geoffrey Critzer, Nov 13 2014

A052773 A simple grammar.

Original entry on oeis.org

1, 1, 5, 31, 229, 1832, 15583, 137791, 1255202, 11693697, 110905169, 1067181020, 10392861567, 102239342761, 1014484221699, 10141596951782, 102044286177390, 1032652191535027, 10503201188806574, 107313868098732336, 1100922685481490057, 11335843298568212815, 117111555943587032146, 1213575764038590524010
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{S=Set(B),B=Prod(Z,S,S,S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    b:= proc(n) option remember; add(a(i)*a(n-i), i=0..n) end:
    g:= proc(n) option remember; add(b(i)*b(n-i), i=0..n) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*g(d-1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 24 2017
  • Mathematica
    b[n_] := b[n] = Sum[a[i]*a[n-i], {i, 0, n}];
    g[n_] := g[n] = Sum[b[i]*b[n-i], {i, 0, n}];
    a[n_] := a[n] = If[n==0, 1, Sum[DivisorSum[j, #*g[#-1]&]*a[n-j], {j, 1, n} ]/n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 28 2017, after Alois P. Heinz *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));if(n==0,1,for(i=1,n, A=exp(sum(k=1,n,subst(x*A^4,x,x^k+x*O(x^n))/k)));polcoeff(A,n,x))} \\ Paul D. Hanna, Jul 13 2006

Formula

G.f.: A(x) = exp(A(x)^4*x + A(x^2)^4*x^2/2 + A(x^3)^4*x^3/3 +...), A(0)=1; also, A(x)^4 = sum_{n=0..inf} A052763(n+1)x^n. - Paul D. Hanna, Jul 13 2006
a(n) ~ c * d^n / n^(3/2), where d = 11.069962877759326312419302623317740386289... (see d(4) in A242249, or A052763) and c = 0.131073637348549764379358468465557... . - Vaclav Kotesovec, Mar 28 2017

Extensions

More terms from Paul D. Hanna, Jul 13 2006

A136793 Number of unlabeled rooted trees with n 4-colored nodes.

Original entry on oeis.org

4, 16, 104, 752, 5996, 50512, 444256, 4027360, 37383044, 353486320, 3393093696, 32976302800, 323839605124, 3208549483216, 32033691247528, 321955764477936, 3254812520854980, 33075467402453872, 337670437247448728, 3461635652745799136, 35620112071990294784
Offset: 1

Views

Author

Christian G. Bower, Jan 21 2008

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 293 (4.1.60).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n<2, n*4, (add(add(d*
          a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, May 16 2014
  • Mathematica
    a[1] = 4; a[n_] := a[n] = Sum[ Sum[ d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1); Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

Shifts left and divides by 4 under EULER transform. a(n) = A136794(n)*2 = A052763(n)*4.

A136794 Number of unlabeled marked rooted trees with n nodes.

Original entry on oeis.org

2, 8, 52, 376, 2998, 25256, 222128, 2013680, 18691522, 176743160, 1696546848, 16488151400, 161919802562, 1604274741608, 16016845623764, 160977882238968, 1627406260427490, 16537733701226936
Offset: 1

Views

Author

Christian G. Bower, Jan 21 2008

Keywords

Comments

A marked rooted tree is a rooted tree where each node and edge is marked as + or -.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 293 (4.1.60).

Crossrefs

Cf. A136795 (tree version), A136796 (labeled version).

Formula

a(n) = A136793(n)/2 = A052763(n)*2.

A345242 G.f. A(x) satisfies: A(x) = x + x^2 * exp(4 * Sum_{k>=1} A(x^k) / k).

Original entry on oeis.org

1, 1, 4, 14, 52, 205, 832, 3492, 14960, 65322, 289384, 1298064, 5882712, 26897352, 123919576, 574718308, 2681028168, 12571650355, 59222213028, 280139215118, 1330101884932, 6336757979653, 30282375754944, 145124083402256, 697293746743760, 3358385599930269, 16210842955175380
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = x + x^2 Exp[4 Sum[A[x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; a[n_] := a[n] = (4/(n - 2)) Sum[Sum[d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 27}]

Formula

G.f.: x + x^2 / Product_{n>=1} (1 - x^n)^(4*a(n)).
a(n+2) = (4/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d) ) * a(n-k+2).
Showing 1-5 of 5 results.