A052889 Number of rooted set partitions.
0, 1, 2, 6, 20, 75, 312, 1421, 7016, 37260, 211470, 1275725, 8142840, 54776761, 387022118, 2863489830, 22127336720, 178162416499, 1491567656472, 12959459317021, 116654844101140, 1086207322942812, 10447135955448522, 103654461984288429, 1059648140522024304
Offset: 0
Examples
a(3) = 6 because the partitions of {1, 2, 3, 4} containing a pair of consecutive integers are 124/3, 134/2, 14/23, 12/3/4, 1/23/4, 1/2/34.
Links
- Robert Israel, Table of n, a(n) for n = 0..575
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From _N. J. A. Sloane_, Sep 17 2012
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 13.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 865
- Sergey Kitaev, Generalized pattern avoidance with additional restrictions, Sem. Lothar. Combinat. B48e (2003); arXiv:math/0205215 [math.CO].
- Sergey Kitaev and Toufik Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2002.
- Augustine O. Munagi, Set Partitions with Successions and Separations, IJMMS 2005:3 (2005),451-463.
Programs
-
Magma
[n eq 0 select 0 else n*Bell(n-1): n in [0..30]]; // G. C. Greubel, May 11 2024
-
Maple
spec := [S,{B=Set(C),C=Set(Z,1 <= card),S=Prod(Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); Explanation of above combstruct commands using generating functions, from Mitch Harris, Jul 28 2003: Z = an atom (each atom used is labeled), gf: Z(x) = x C = Set(Z, card <= 1) is the set of positive integers; gf: C(x) = e^(Z(x)) - 1 = e^x - 1 (the -1 removes the empty set); [x^n]C = 1 means there is exactly one set with n atoms since each atom is labeled B = Set(C) the set of (ordered) sets of integers = ordered set partitions; gf: B(x) = e^C(x) = e^(e^x - 1) S = Prod(Z, B) pairs of an atom (Z) and an ordered set partition = an ordered set partition with an adjoining single atom. The adjoining atom corresponds to choosing a "root" in the partition; gf: S(x) = x B(x) = x*e^(e^x-1) A052889 := n -> `if`(n=0,0,n*combinat[bell](n-1)): seq(A052889(n),n=0..20); # Peter Luschny, Apr 19 2011
-
Mathematica
Range[0, 20]! CoefficientList[Series[ x Exp[Exp[x]-1], {x, 0, 20}], x] (* Geoffrey Critzer, Nov 25 2011 *) Table[If[n==0, 0, n*BellB[n-1]], {n,0,30}] (* G. C. Greubel, May 11 2024 *)
-
SageMath
[0]+[n*bell_number(n-1) for n in range(1,31)] # G. C. Greubel, May 11 2024
Formula
E.g.f.: x*exp(exp(x)-1).
a(n) = n*A000110(n-1). - Vladeta Jovovic, Sep 14 2003
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jul 08 2010
Comments