A056857
Triangle read by rows: T(n,c) = number of successive equalities in set partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 20, 12, 4, 1, 52, 75, 50, 20, 5, 1, 203, 312, 225, 100, 30, 6, 1, 877, 1421, 1092, 525, 175, 42, 7, 1, 4140, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 21147, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 115975, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000
For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 successive equality, at i = 4.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 6, 3, 1;
15, 20, 12, 4, 1;
52, 75, 50, 20, 5, 1;
203, 312, 225, 100, 30, 6, 1;
...
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 4, 6, 4, 1, 1;
1, 5, 10, 10, 5, 1, 1;
1, 6, 15, 20, 15, 6, 1, 1;
1, 7, 21, 35, 35, 21, 7, 1, 1;
1, 8, 28, 56, 70, 56, 28, 8, 1, 1; ... (End)
- W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. See Table III.
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. [Annotated scanned copy]
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- A. Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2, Corollary 17.
- G. Hurst and A. Schultz, An elementary (number theory) proof of Touchard's congruence, arXiv:0906.0696v2 [math.CO], 2009.
- A. O. Munagi, Set partitions with successions and separations, Intl. J. Math. Math. Sci. 2005 (2005) 451-463.
- M. Spivey, A generalized recurrence for Bell numbers, J. Int. Seq., 11 (2008), no. 2, Article 08.2.5
- W. Yang, Bell numbers and k-trees, Disc. Math. 156 (1996) 247-252.
-
with(combinat): A056857:=(n,c)->binomial(n-1,c)*bell(n-1-c): for n from 1 to 11 do seq(A056857(n,c),c=0..n-1) od; # yields sequence in triangular form; Emeric Deutsch, Nov 10 2006
with(linalg): # Yields sequence in matrix form:
A056857_matrix := n -> subs(exp(1)=1, exponential(exponential(
matrix(n,n,[seq(seq(`if`(j=k+1,j,0),k=0..n-1),j=0..n-1)])))):
A056857_matrix(8); # Peter Luschny, Apr 18 2011
-
t[n_, k_] := BellB[n-1-k]*Binomial[n-1, k]; Flatten[ Table[t[n, k], {n, 1, 11}, {k, 0, n-1}]](* Jean-François Alcover, Apr 25 2012, after Emeric Deutsch *)
-
B(n) = sum(k=0, n, stirling(n, k, 2));
tabl(nn)={for(n=1, nn, for(k=0, n - 1, print1(B(n - 1 - k) * binomial(n - 1, k),", ");); print(););};
tabl(12); \\ Indranil Ghosh, Mar 19 2017
-
from sympy import bell, binomial
for n in range(1,12):
print([bell(n - 1 - k) * binomial(n - 1, k) for k in range(n)]) # Indranil Ghosh, Mar 19 2017
-
def a(n): return (-1)^n / factorial(n)
@cached_function
def p(n, m):
R = PolynomialRing(QQ, "x")
if n == 0: return R(a(m))
return R((m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1))
for n in range(11): print(p(n, 0).list()) # Peter Luschny, Jun 18 2023
A124323
Triangle read by rows: T(n,k) is the number of partitions of an n-set having k singleton blocks (0<=k<=n).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0
T(4,2)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
1
0 1
1 0 1
1 3 0 1
4 4 6 0 1
11 20 10 10 0 1
41 66 60 20 15 0 1
162 287 231 140 35 21 0 1
715 1296 1148 616 280 56 28 0 1
3425 6435 5832 3444 1386 504 84 36 0 1
From _Gus Wiseman_, Feb 13 2019: (Start)
Row n = 5 counts the following set partitions by number of singletons:
{{1234}} {{1}{234}} {{1}{2}{34}} {{1}{2}{3}{4}}
{{12}{34}} {{123}{4}} {{1}{23}{4}}
{{13}{24}} {{124}{3}} {{12}{3}{4}}
{{14}{23}} {{134}{2}} {{1}{24}{3}}
{{13}{2}{4}}
{{14}{2}{3}}
... and the following set partitions by number of cyclical adjacencies:
{{13}{24}} {{1}{2}{34}} {{1}{234}} {{1234}}
{{1}{24}{3}} {{1}{23}{4}} {{12}{34}}
{{13}{2}{4}} {{12}{3}{4}} {{123}{4}}
{{1}{2}{3}{4}} {{14}{2}{3}} {{124}{3}}
{{134}{2}}
{{14}{23}}
(End)
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
0, 1,
1, 0, 1,
1, 2, 0, 1,
1, 3, 3, 0, 1,
1, 4, 6, 4, 0, 1,
1, 5, 10, 10, 5, 0, 1,
1, 6, 15, 20, 15, 6, 0, 1,
1, 7, 21, 35, 35, 21, 7, 0, 1,
1, 8, 28, 56, 70, 56, 28, 8, 0, 1 (End)
- Alois P. Heinz, Rows n = 0..140, flattened
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
- T. Mansour, A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
A250104 is an essentially identical triangle, differing only in row 1.
Cf.
A000126,
A001610,
A032032,
A052841,
A066982,
A080107,
A169985,
A187784,
A324011,
A324014,
A324015.
-
G:=exp(exp(z)-1+(t-1)*z): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form
# Program from R. J. Mathar, Jan 22 2015:
A124323 := proc(n,k)
binomial(n,k)*A000296(n-k) ;
end proc:
-
Flatten[CoefficientList[Range[0,10]! CoefficientList[Series[Exp[x y] Exp[Exp[x] - x - 1], {x, 0,10}], x], y]] (* Geoffrey Critzer, Nov 24 2011 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Count[#,{}]==k&]],{n,0,9},{k,0,n}] (* _Gus Wiseman, Feb 13 2019 *)
A070071
a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
Original entry on oeis.org
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
-
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
A105488
Number of partitions of {1...n} containing 2 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly two 2-strings.
Original entry on oeis.org
1, 6, 30, 150, 780, 4263, 24556, 149040, 951615, 6378625, 44785620, 328660566, 2515643767, 20044428810, 165955025400, 1425299331992, 12678325080012, 116635133853189, 1108221018960830, 10862073229428120, 109694927532209481, 1140199081827172719
Offset: 4
a(5)=6 because the partitions of {1,2,3,4,5} with 2 detached pairs of consecutive integers are 145/23,125/34,1245/3,12/34/5,12/3/45,1/23/45.
-
seq(binomial(n-2,2)*combinat[bell](n-3),n=4..28);
-
a[n_] := Binomial[n-2, 2]*BellB[n-3];
Table[a[n], {n, 4, 25}] (* Jean-François Alcover, May 11 2019 *)
A033306
Triangle of coefficients of ordered cycle-index polynomials: T(n,k) = binomial(n,k)*Bell(k)*Bell(n-k).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 6, 6, 5, 15, 20, 24, 20, 15, 52, 75, 100, 100, 75, 52, 203, 312, 450, 500, 450, 312, 203, 877, 1421, 2184, 2625, 2625, 2184, 1421, 877, 4140, 7016, 11368, 14560, 15750, 14560, 11368, 7016, 4140, 21147, 37260, 63144, 85260, 98280, 98280, 85260, 63144, 37260, 21147
Offset: 0
1;
1, 1;
2, 2, 2;
5, 6, 6, 5;
15, 20, 24, 20, 15;
52, 75, 100, 100, 75, 52;
...
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 80.
-
A033306 := proc(n,k)
if k < 0 or k > n then
0;
else
binomial(n,k)*combinat[bell](k)*combinat[bell](n-k) ;
end if;
end proc: # R. J. Mathar, Mar 21 2013
# second Maple program:
b:= proc(n) option remember; expand(`if`(n>0, add(
(x^j+1)*b(n-j)*binomial(n-1, j-1), j=1..n), 1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 30 2019
-
t[n_, k_] := Binomial[n, k] * BellB[k] * BellB[n-k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
A175757
Triangular array read by rows: T(n,k) is the number of blocks of size k in all set partitions of {1,2,...,n}.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 20, 12, 4, 1, 75, 50, 20, 5, 1, 312, 225, 100, 30, 6, 1, 1421, 1092, 525, 175, 42, 7, 1, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
The set {1,2,3} has 5 partitions, {{1, 2, 3}}, {{2, 3}, {1}}, {{1, 3}, {2}}, {{1, 2}, {3}}, and {{2}, {3}, {1}}, and there are a total of 3 blocks of size 2, so T(3,2)=3.
Triangle begins:
1;
2, 1;
6, 3, 1;
20, 12, 4, 1;
75, 50, 20, 5, 1;
312, 225, 100, 30, 6, 1;
...
-
b:= proc(n) option remember; `if`(n=0, [1, 0],
add((p-> p+[0, p[1]*x^j])(b(n-j)*
binomial(n-1, j-1)), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)[2]):
seq(T(n), n=1..12); # Alois P. Heinz, Apr 24 2017
-
Table[Table[Length[Select[Level[SetPartitions[m],{2}],Length[#]==n&]],{n,1,m}],{m,1,10}]//Grid
A177255
a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.
Original entry on oeis.org
0, 1, 3, 9, 29, 104, 416, 1837, 8853, 46113, 257583, 1533308, 9676148, 64452909, 451475027, 3314964857, 25442301577, 203604718076, 1695172374548, 14654631691569, 131309475792709, 1217516798735521, 11664652754184043, 115319114738472472, 1174967255260496776
Offset: 0
-
[n eq 0 select 0 else (&+[j*Bell(j-1): j in [1..n]]): n in [0..30]]; // G. C. Greubel, May 11 2024
-
with(combinat): a := proc (n) options operator, arrow: sum(j*bell(j-1), j = 1 .. n) end proc; seq(a(n), n = 0 .. 23);
-
With[{nn=30},Join[{0},Accumulate[BellB[Range[0,nn-1]]Range[nn]]]] (* Harvey P. Dale, Nov 10 2014 *)
-
[sum(j*bell_number(j-1) for j in range(1,1+n)) for n in range(31)] # G. C. Greubel, May 11 2024
A184174
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks of size 2, i.e., blocks of the form (i,i+1) (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 10, 4, 1, 35, 14, 3, 139, 54, 9, 1, 611, 224, 38, 4, 2925, 1027, 171, 16, 1, 15128, 5112, 822, 80, 5, 83903, 27352, 4279, 415, 25, 1, 495929, 156392, 23826, 2272, 145, 6, 3108129, 950285, 141039, 13252, 855, 36, 1, 20565721, 6107540, 883982, 81692, 5257, 238, 7
Offset: 0
T(4,1)=4 because we have 12-3-4, 1-23-4, 1-2-34, 14-23. T(4,2)=1 because we have 12-34.
Triangle starts:
1;
1;
1, 1;
3, 2;
10, 4, 1;
35, 14, 3;
139, 54, 9, 1;
611, 224, 38, 4;
2925, 1027, 171, 16, 1;
15128, 5112, 822, 80, 5;
83903, 27352, 4279, 415, 25, 1;
495929, 156392, 23826, 2272, 145, 6;
3108129, 950285, 141039, 13252, 855, 36, 1; ...
-
with(combinat): q := 2: a := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*binomial(n+j-j*q, j)*bell(n-j*q), j = k .. floor(n/q)) end proc: for n from 0 to 13 do seq(a(n, k), k = 0 .. floor(n/q)) end do; # yields sequence in triangular form
-
T[n_, k_] := Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[n-j, j]*BellB[n-2j], {j, k, Floor[n/2]}]; Table[T[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Feb 21 2017 *)
-
{T(n,k) = my(A = sum(m=0,n, x^m/prod(k=0,m,1 - k*x + (1-y)*x^2 +x*O(x^n)))); polcoeff(polcoeff(A,n,x),k,y)}
for(n=0,12,for(k=0,n\2,print1(T(n,k),", "));print("")) \\ Paul D. Hanna, Sep 03 2017
A184176
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks of size 3, i.e., blocks of the form (i,i+1,i+2) (0 <= k <= floor(n/3)).
Original entry on oeis.org
1, 1, 2, 4, 1, 13, 2, 46, 6, 184, 18, 1, 805, 69, 3, 3840, 288, 12, 19775, 1324, 47, 1, 109180, 6578, 213, 4, 642382, 35136, 1032, 20, 4007712, 200398, 5390, 96, 1, 26399764, 1214136, 30027, 505, 5, 182939900, 7778856, 177744, 2792, 30, 1329327991, 52501052, 1112969, 16362, 170, 1
Offset: 0
T(4,1) = 2 because we have 123-4 and 1-234.
Triangle starts:
1;
1;
2;
4, 1;
13, 2;
46, 6;
184, 18, 1;
-
with(combinat): q := 3: a := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*binomial(n+j-j*q, j)*bell(n-j*q), j = k .. floor(n/q)) end proc: for n from 0 to 15 do seq(a(n, k), k = 0 .. floor(n/q)) end do; # yields sequence in triangular form
-
q = 3; a[n_, k_] := Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[n+j-j*q, j]* BellB[n-j*q], {j, k, Floor[n/q]}]; Table[a[n, k], {n, 0, 15}, {k, 0, Floor[n/q]}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
Original entry on oeis.org
1, 6, 30, 148, 755, 4044, 22841, 136056, 853452, 5625950, 38885297, 281170080, 2122313505, 16688829122, 136457754030, 1158155642512, 10186602918035, 92711977180164, 871936904575985, 8462913158427580, 84668764368102012, 872196382566014506, 9241557859113581689
Offset: 0
a(n) = sum of terms in n-th row of A127740. a(2) = 30 = (6 + 9 + 15).
-
lim=24;A005493=Differences[BellB[Range[lim]]];Array[(#+1)*A005493[[#+1]]&,lim-1,0] (* James C. McMahon, Jan 02 2025 *)
-
# requires Python 3.2 or higher. Otherwise use def'n of accumulate in Python docs.
from itertools import accumulate
A127741_list, blist, b = [], [1], 1
for n in range(1,1001):
blist = list(accumulate([b]+blist))
b = blist[-1]
A127741_list.append(blist[-2]*n) # Chai Wah Wu, Sep 20 2014
Showing 1-10 of 12 results.
Comments