A052901 Periodic with period 3: a(3n)=3, a(3n+1)=a(3n+2)=2.
3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 878
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Haskell
a052901 n = a052901_list !! n a052901_list = cycle [3,2,2] -- Reinhard Zumkeller, Apr 08 2012
-
Maple
spec := [S,{S=Union(Sequence(Z),Sequence(Z),Sequence(Prod(Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
PadRight[{},110,{3,2,2}] (* Harvey P. Dale, Mar 19 2013 *) LinearRecurrence[{0, 0, 1},{3, 2, 2},105] (* Ray Chandler, Aug 25 2015 *)
-
PARI
Vec((2*x^2+2*x+3)/(1-x^3)+O(x^99)) \\ Charles R Greathouse IV, Apr 08 2012
Formula
G.f.: (2*x^2 + 2*x + 3)/(1-x^3).
a(n) = Sum((1/3)*(2*alpha^2 + 3*alpha + 2)*alpha^(-1-n), where alpha = RootOf(-1+x^3)).
a(n) = ceiling(7*(n+1)/3) - ceiling(7*n/3). - Tom Edgar, Jul 17 2014
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 12/(a(n-2)*a(n-1)).
Extensions
More terms from James Sellers, Jun 06 2000
Comments