cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A208131 Partial products of A052901.

Original entry on oeis.org

1, 3, 6, 12, 36, 72, 144, 432, 864, 1728, 5184, 10368, 20736, 62208, 124416, 248832, 746496, 1492992, 2985984, 8957952, 17915904, 35831808, 107495424, 214990848, 429981696, 1289945088, 2579890176, 5159780352, 15479341056, 30958682112, 61917364224, 185752092672
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 04 2012

Keywords

Crossrefs

Programs

  • Haskell
    a208131 n = a208131_list !! n
    a208131_list = scanl (*) 1 $ a052901_list
    -- Reinhard Zumkeller, Mar 29 2012
  • Mathematica
    FoldList[Times,1,PadRight[{},30,{3,2,2}]] (* Harvey P. Dale, Mar 19 2013 *)

Formula

a(n+1) = a(n) * A052901(n).
A001222(a(n)) = n.
a(n) = 12^floor(n/3)*(r+1)*(r+2)/2 with r = n mod 3. G.f.: -(6*x^2+3*x+1) / (12*x^3-1). - Alois P. Heinz, Apr 05 2012
Sum_{n>=0} 1/a(n) = 18/11. - Amiram Eldar, Feb 13 2023

A069705 a(n) = 2^n mod 7.

Original entry on oeis.org

1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 0

Views

Author

Jon Perry, Jan 14 2003

Keywords

Comments

Periodic sequence with period [1,2,4]. - Philippe Deléham, Sep 25 2006
From Klaus Brockhaus, May 23 2010: (Start)
Continued fraction expansion of (11 + sqrt(229))/18.
Decimal expansion of 124/999. (End)

Examples

			a(4)=16 mod 7=2, a(5)=32 mod 7=4, a(6)=64 mod 7=1.
		

Crossrefs

Cf. A178233 (decimal expansion of (11+sqrt(229))/18).

Programs

Formula

n=0 mod 3 -> a(n)=1 n=1 mod 3 -> a(n)=2 n=2 mod 3 -> a(n)=4.
a(n) = 2^(n mod 3). - Paul Barry, Oct 06 2003
a(n) = cubefree part of 2^n = A000079(A050985(n)). - Artur Jasinski, Oct 15 2008
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-3).
G.f.: (1+2*x+4*x^2)/((1-x) * (1+x+x^2)). (End)
a(n) = (7+5*cos(2*(n+1)*Pi/3)-sqrt(3)*sin(2*(n+1)*Pi/3))/3. - Wesley Ivan Hurt, Oct 01 2017
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 8/(a(n-2)*a(n-1)).
a(n) = 7 - a(n-2) - a(n-1). See also A052901 or A144437. (End)
a(n) = n + 1 + floor((n+1)/3) - 4*floor(n/3). - Ridouane Oudra, Sep 25 2024
E.g.f.: (7*exp(x) - 2*exp(-x/2)*(2*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)))/3. - Stefano Spezia, Sep 27 2024

A144437 Period 3: repeat [3, 3, 1].

Original entry on oeis.org

3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3
Offset: 1

Views

Author

Paul Curtz, Oct 05 2008

Keywords

Comments

The sequence is generated from numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...
Conjecture: a(n) is the separatix. See A045944.
Also the decimal expansion of the constant 3310/999. - R. J. Mathar, May 21 2009
Continued fraction expansion of A171417.
Greatest common divisor of (n+1)^2-1 and (n+1)^2+2. - Bruno Berselli, Mar 08 2017

Crossrefs

Numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...

Programs

Formula

a(n) = (7-4*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008
G.f.: x*(3 + 3*x + x^2)/((1 - x)*(1 + x + x^2)). - R. J. Mathar, May 21 2009
a(n) = 3/gcd(n,3). - Reinhard Zumkeller, Oct 30 2009
a(n) = denominator(n^k/3), where k>0 is an integer. - Enrique Pérez Herrero, Oct 05 2011
a(n) = gcd(T(n+1), T(2)) = A256095(n+1, 2), with the triangular numbers T = A000217, for n >= 1. - Wolfdieter Lang, Mar 17 2015
a(n) = a(n-3) for n>3; a(n) = A169609(n) for n>0. - Wesley Ivan Hurt, Jul 02 2016
E.g.f.: (1/3)*(7*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2) - 3). - G. C. Greubel, Aug 24 2017
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 9/(a(n-2)*a(n-1)).
a(n) = 7 - a(n-2) - a(n-1). See also A052901 or A069705. (End)

Extensions

Edited by R. J. Mathar, May 21 2009

A082204 Begin with a 1, then place the smallest (as far as possible distinct) digits, such that, beginning from the n-th term, n terms form a palindrome.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Amarnath Murthy, Apr 10 2003

Keywords

Examples

			The first six palindromes are 1, 22, 232, 3223, 22322, 232232.
		

Crossrefs

Essentially the same as A052901.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{0, 0, 1},{2, 2, 3},104]] (* Ray Chandler, Aug 25 2015 *)

Formula

a(1) = 1; for k > 0, a(3k-1) = a(3k) = 2; a(3k+1) = 3. - David Wasserman, Aug 19 2004

Extensions

More terms from David Wasserman, Aug 19 2004

A176979 Decimal expansion of (15+sqrt(365))/10.

Original entry on oeis.org

3, 4, 1, 0, 4, 9, 7, 3, 1, 7, 4, 5, 4, 2, 8, 0, 0, 1, 7, 9, 1, 6, 8, 2, 9, 5, 7, 5, 2, 4, 9, 6, 6, 9, 1, 4, 1, 5, 3, 9, 6, 4, 7, 2, 3, 3, 1, 7, 6, 7, 9, 9, 7, 3, 6, 5, 2, 5, 8, 0, 8, 2, 1, 3, 4, 8, 7, 0, 0, 0, 1, 0, 7, 4, 9, 2, 6, 5, 5, 2, 1, 2, 9, 2, 6, 0, 7, 3, 2, 6, 4, 8, 2, 8, 5, 6, 5, 5, 6, 7, 9, 8, 9, 5, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2010

Keywords

Comments

Continued fraction expansion of (15+sqrt(365))/10 is A052901.

Examples

			(15+sqrt(365))/10 = 3.41049731745428001791...
		

Crossrefs

Cf. A176980 (decimal expansion of sqrt(365)), A052901 (repeat 3, 2, 2).

A260307 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) with a(0) - a(8) as shown below.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 13, 10, 15, 12, 17, 14, 20, 15, 22, 17, 24, 19, 27, 20, 29, 22, 31, 24, 34, 25, 36, 27, 38, 29, 41, 30, 43, 32, 45, 34, 48, 35, 50, 37, 52, 39, 55, 40, 57, 42, 59, 44, 62, 45, 64, 47, 66, 49, 69, 50, 71, 52, 73, 54, 76, 55, 78
Offset: 0

Views

Author

Paul Curtz, Nov 22 2015

Keywords

Comments

A260708 difference table rows have the same nine-step recurrence:
0, 1, 3, 6, 10, 16, 21, 29, 36, 46, 55, 65, 78, 93, ...
1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 13, 10, 15, 12, ... = a(n)
1, 1, 1, 2, -1, 3, -1, 3, -1, 4, -3, 5, -3, 5, ... = b(n)
0, 0, 1, -3, 4, -4, 4, -4, 5, -7, 8, -8, 8, -8, ... (see A042965(n)).
(b(2n) + b(2n+1) = A052901(n+2).)

Crossrefs

Cf. A004767, A010718, A042965, A047212, A047282, A052901, A152467, A260160 (eight-step recurrence), A260699 (nine-step recurrence), A260708.

Programs

  • Magma
    I:=[1,2,3,4,6,5,8,7];[n le 8 select I[n] else Self(n-2) + Self(n-6) - Self(n-8): n in [1..70]]; // Vincenzo Librandi, Dec 26 2015
  • Mathematica
    RecurrenceTable[{a[n] == a[n-2] + a[n-6] - a[n-8], a[0]=1, a[1]=2, a[2]=3, a[3]=4, a[4]=6, a[5]=5, a[6]=8, a[7]=7}, a, {n,0,100}] (* G. C. Greubel, Nov 23 2015 *)
  • PARI
    Vec((x^6+x^5+3*x^4+2*x^3+2*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 22 2015
    
  • PARI
    vector(100, n, n--; n + (-1)^n *((n+2)\6) + 1) \\ Altug Alkan, Nov 24 2015
    

Formula

a(2n) = A047282(n). a(2n+1) = A047212(n+1).
a(n) = A260708(n+1) - A260708(n).
a(n+6) = a(n) + period of length 2: repeat 7, 5.
a(2n) + a(2n+1) = 3 + 4*n.
a(n) = n + 1 + (-1)^n*A152467(n+2).
From Colin Barker, Nov 22 2015: (Start)
a(n) = a(n-2) + a(n-6) - a(n-8) for n>7.
G.f.: (x^6+x^5+3*x^4+2*x^3+2*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+x+1)).
(End)

A267068 a(n) = (n+1) / A189733(n).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 2, 11, 1, 13, 2, 3, 2, 17, 1, 19, 2, 3, 2, 23, 1, 25, 2, 3, 2, 29, 1, 31, 2, 3, 2, 35, 1, 37, 2, 3, 2, 41, 1, 43, 2, 3, 2, 47, 1, 49, 2, 3, 2, 53, 1, 55, 2, 3, 2, 59, 1, 61, 2, 3, 2, 65, 1, 67, 2, 3, 2
Offset: 0

Views

Author

Paul Curtz, Jan 10 2016

Keywords

Comments

A189733(n) is the denominator of an autosequence of the first kind (the main diagonal is A000004).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 2 x + 3 x^2 + 2 x^3 + 5 x^4 + x^5 + 5 x^6 - 2 x^7 - 3 x^8 - 2 x^9 + x^10 - x^11)/((1 - x)^2 (1 + x)^2 (1 - x + x^2)^2 (1 + x + x^2)^2), {x, 0, 69}], x] (* or *)
    b[m_, n_] := b[m, n] = Which[m == n, 0, n == m + 1, (-1)^(n + 1)/n, n > m, b[m, n - 1] + b[m + 1, n - 1], n < m, b[m - 1, n + 1] - b[m - 1, n]]; Table[(n + 1)/Denominator@ b[0, n], {n, 0, 69}] (* Michael De Vlieger, Jan 15 2016, Jean-François Alcover at A189733 *)

Formula

a(2n+1) = A130196(n+1).
A052901(n+2) = period 3: 2, 3, 2 is at rank A047245(n+1) = 1, 2, 3, 7, 8, 9, ... .
Conjectures from Colin Barker, Jan 10 2016: (Start)
a(n) = 2*a(n-6) - a(n-12) for n>11.
G.f.: (1+2*x+3*x^2+2*x^3+5*x^4+x^5+5*x^6-2*x^7-3*x^8-2*x^9+x^10-x^11) / ((1-x)^2*(1+x)^2*(1-x+x^2)^2*(1+x+x^2)^2).
(End)
a(3n) + a(3n+1) + a(3n+2) = A047238(n+3).
Showing 1-7 of 7 results.