cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A153112 a(0) = 0 and a(1)=a(2)=1; a(n) = a(a(n-1)) + a(n-a(n-1)) unless floor( sum_{i=0..n-1} a(i)/2) mod 16*A069705(n) = 1 in which case a(n) = A010882(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 9, 10, 11, 2, 12, 12, 12, 13, 13, 2, 14, 14, 14, 14, 15, 16, 16, 17, 18, 18, 19, 19, 10, 19, 20, 20, 20, 21, 21, 21, 10, 24, 24, 13, 24, 25, 16, 26, 26, 26, 27, 27, 28, 28, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 2, 6, 7, 7, 8, 8, 8, 8, 5
Offset: 0

Views

Author

Roger L. Bagula, Dec 18 2008

Keywords

References

  • Per Bak, "How nature works, the science of self-organized criticality", Springer, New York (1996), pp. 49-64.

Crossrefs

Programs

  • Maple
    A069705 := proc(n) op(1+(n mod 3), [1,2,4]) ; end proc:
    A010882 := proc(n) op(1+(n mod 3), [1,2,3]) ; end proc:
    A153112 := proc(n) option remember; local psu ; if n=0 then 0; elif n<=2 then 1; else psu := add( procname(i),i=0..n-1) ; if floor(psu/2) mod (16*A069705(n)) = 1 then A010882(n) ; else procname(procname(n-1)) +procname(n-procname(n-1)) ; end if; end if; end proc:
    seq(A153112(n),n=0..100) ; # R. J. Mathar, Jun 24 2011
  • Mathematica
    Clear[f, n]; f[0] = 0; f[1] = 1; f[2] = 1;
    f[n_] := f[n] = If[Mod[ Floor[Sum[f[i], {i,0, n - 1}]/2], 2^(4 + Mod[n, 3])] == 1, 1 + Mod[n, 3],
    f[f[n - 1]] + f[n - f[n - 1]]]; a = Table[f[n], {n, 0, 200}]

Extensions

Definition cleaned up. - R. J. Mathar, Jun 24 2011

A144437 Period 3: repeat [3, 3, 1].

Original entry on oeis.org

3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3
Offset: 1

Views

Author

Paul Curtz, Oct 05 2008

Keywords

Comments

The sequence is generated from numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...
Conjecture: a(n) is the separatix. See A045944.
Also the decimal expansion of the constant 3310/999. - R. J. Mathar, May 21 2009
Continued fraction expansion of A171417.
Greatest common divisor of (n+1)^2-1 and (n+1)^2+2. - Bruno Berselli, Mar 08 2017

Crossrefs

Numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...

Programs

Formula

a(n) = (7-4*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008
G.f.: x*(3 + 3*x + x^2)/((1 - x)*(1 + x + x^2)). - R. J. Mathar, May 21 2009
a(n) = 3/gcd(n,3). - Reinhard Zumkeller, Oct 30 2009
a(n) = denominator(n^k/3), where k>0 is an integer. - Enrique Pérez Herrero, Oct 05 2011
a(n) = gcd(T(n+1), T(2)) = A256095(n+1, 2), with the triangular numbers T = A000217, for n >= 1. - Wolfdieter Lang, Mar 17 2015
a(n) = a(n-3) for n>3; a(n) = A169609(n) for n>0. - Wesley Ivan Hurt, Jul 02 2016
E.g.f.: (1/3)*(7*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2) - 3). - G. C. Greubel, Aug 24 2017
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 9/(a(n-2)*a(n-1)).
a(n) = 7 - a(n-2) - a(n-1). See also A052901 or A069705. (End)

Extensions

Edited by R. J. Mathar, May 21 2009

A201908 Irregular triangle of 2^k mod (2n-1).

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 9
Offset: 1

Views

Author

T. D. Noe, Dec 07 2011

Keywords

Comments

The length of the rows is given by A002326. For n > 1, the first term of row n is 1 and the last term is n. Many sequences are in this one: starting at A036117 (mod 11) and A070335 (mod 23).
Row n, for n >= 2, divided elementwise by (2*n-1) gives the cycles of iterations of the doubling function D(x) = 2*x or 2*x-1 if 0 <= x < 1/2 or , 1/2 <= x < 1, respectively, with seed 1/(2*n-1). See the Devaney reference, pp. 25-26. D^[k](x) = frac(2^k/(2*n-1)), for k = 0, 1, ..., A002326(n-1) - 1. E.g., n = 3: 1/5, 2/5, 4/5, 3/5. - Gary W. Adamson and Wolfdieter Lang, Jul 29 2020.

Examples

			The irregular triangle T(n, k) begins:
n\k  0 1 2 3  4  5  6  7 8  9 10 11 12 13 14 15 16 17 ...
---------------------------------------------------------
1:   0
2:   1 2
3:   1 2 4 3
4:   1 2 4
5:   1 2 4 8  7  5
6:   1 2 4 8  5 10  9  7 3  6
7:   1 2 4 8  3  6 12 11 9  5 10  7
8:   1 2 4 8
9:   1 2 4 8 16 15 13  9
10:  1 2 4 8 16 13  7 14 9 18 17 15 11  3  6 12  5 10
... reformatted by _Wolfdieter Lang_, Jul 29 2020.
		

References

  • Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley., 1992. pp. 24-25

Crossrefs

Cf. A002326, A201909 (3^k), A201910 (5^k), A201911 (7^k).
Cf. A000034 (3), A070402 (5), A069705 (7), A036117 (11), A036118 (13), A062116 (17), A036120 (19), A070347 (21), A070335 (23), A070336 (25), A070337 (27), A036122 (29), A070338 (33), A070339 (35), A036124 (37), A070340 (39), A070348 (41), A070349 (43), A070350 (45), A070351 (47), A036128 (53), A036129 (59), A036130 (61), A036131 (67), A036135 (83), A036138 (101), A036140 (107), A201920 (125), A036144 (131), A036146 (139), A036147 (149), A036150 (163), A036152 (173), A036153 (179), A036154 (181), A036157 (197), A036159 (211), A036161 (227).

Programs

  • GAP
    R:=List([0..72],n->OrderMod(2,2*n+1));;
    Flat(Concatenation([0],List([2..11],n->List([0..R[n]-1],k->PowerMod(2,k,2*n-1))))); # Muniru A Asiru, Feb 02 2019
  • Mathematica
    nn = 30; p = 2; t = p^Range[0, nn]; Flatten[Table[If[IntegerQ[Log[p, n]], {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, 1, nn, 2}]]

Formula

T(n, k) = 2^k mod (2*n-1), n >= 1, k = 0, 1, ..., A002326(n-1) - 1.
T(n, k) = (2*n-1)*frac(2^k/(2*n-1)), n >= 1, k = 0, 1, ..., A002326(n-1) - 1, with the fractional part frac(x) = x - floor(x). - Wolfdieter Lang, Jul 29 2020

A052901 Periodic with period 3: a(3n)=3, a(3n+1)=a(3n+2)=2.

Original entry on oeis.org

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Continued fraction expansion of (15 + sqrt(365))/10 = A176979. - Klaus Brockhaus, Apr 30 2010
First differences of A047390. - Tom Edgar, Jul 17 2014
Also decimal expansion of 322/999. - Nicolas Bělohoubek, Nov 11 2021

Crossrefs

Cf. A176979 (decimal expansion of (15+sqrt(365))/10).
Cf. A208131 (partial products).

Programs

  • Haskell
    a052901 n = a052901_list !! n
    a052901_list = cycle [3,2,2]  -- Reinhard Zumkeller, Apr 08 2012
    
  • Maple
    spec := [S,{S=Union(Sequence(Z),Sequence(Z),Sequence(Prod(Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    PadRight[{},110,{3,2,2}] (* Harvey P. Dale, Mar 19 2013 *)
    LinearRecurrence[{0, 0, 1},{3, 2, 2},105] (* Ray Chandler, Aug 25 2015 *)
  • PARI
    Vec((2*x^2+2*x+3)/(1-x^3)+O(x^99)) \\ Charles R Greathouse IV, Apr 08 2012

Formula

G.f.: (2*x^2 + 2*x + 3)/(1-x^3).
a(n) = Sum((1/3)*(2*alpha^2 + 3*alpha + 2)*alpha^(-1-n), where alpha = RootOf(-1+x^3)).
a(n) = ceiling(7*(n+1)/3) - ceiling(7*n/3). - Tom Edgar, Jul 17 2014
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 12/(a(n-2)*a(n-1)).
a(n) = 7 - a(n-2) - a(n-1). See also A069705 or A144437. (End)

Extensions

More terms from James Sellers, Jun 06 2000

A179132 Denominators of A178381(4*n+1)/A178381(4*n).

Original entry on oeis.org

1, 3, 14, 36, 47, 246, 644, 843, 4414, 11556, 15127, 79206, 207364, 271443, 1421294, 3720996, 4870847, 25504086, 66770564, 87403803, 457652254, 1198149156, 1568397607, 8212236486, 21499914244, 28143753123, 147362604494
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the numerators see A179131.

Crossrefs

Cf. A128052 and A179133.

Programs

  • Maple
    with(GraphTheory): nmax:=116; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+1)/A178381(4*n)) od: seq(a(n),n=0..nmax/4-1);
  • Mathematica
    LinearRecurrence[{0,0,18,0,0,-1},{1,3,14,36,47,246,644},30] (* Harvey P. Dale, Jun 11 2022 *)

Formula

a(n) = A069705(n-1)*A128052(n) for n>=1.
Limit(A179131(n)/A179132(n), n =infinity) = 1+cos(Pi/5) = A296182.
a(n) = 18*a(n-3)-a(n-6) for n>6. G.f.: -(3*x^6+6*x^5+7*x^4-18*x^3-14*x^2-3*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013

A201912 Irregular triangle of 2^k mod prime(n).

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 3, 6, 12, 24
Offset: 1

Views

Author

T. D. Noe, Dec 17 2011

Keywords

Comments

The row lengths are in A014664. For n > 1, the first term of each row is 1 and the last term is 2*prime(n)-1, which is A006254. Many sequences are in this one.

Examples

			The first 11 rows are:
2:  0;
3:  1, 2;
5:  1, 2, 4, 3;
7:  1, 2, 4;
11: 1, 2, 4, 8,  5, 10,  9,  7,  3,  6;
13: 1, 2, 4, 8,  3,  6, 12, 11,  9,  5, 10,  7;
17: 1, 2, 4, 8, 16, 15, 13,  9;
19: 1, 2, 4, 8, 16, 13,  7, 14,  9, 18, 17, 15, 11,  3,  6, 12,  5, 10;
23: 1, 2, 4, 8, 16,  9, 18, 13,  3,  6, 12;
29: 1, 2, 4, 8, 16,  3,  6, 12, 24, 19,  9, 18,  7, 14, 28, 27, 25, 21, 13, 26, 23, 17, 5, 10, 20, 11, 22, 15;
31: 1, 2, 4, 8, 16;
		

Crossrefs

Cf. similar sequences of the type 2^n mod p, where p is a prime: A000034 (p=3), A070402 (p=5), A069705 (p=7), A036117 (p=11), A036118 (p=13), A062116 (p=17), A036120 (p=19), A070335 (p=23), A036122 (p=29), A269266 (p=31), A036124 (p=37), A070348 (p=41), A070349 (p=43), A070351 (p=47), A036128 (p=53), A036129 (p=59), A036130 (p=61), A036131 (p=67), A036135 (p=83), A036138 (p=101), A036140 (p=107), A036144 (p=131), A036146 (p=139), A036147 (p=149), A036150 (p=163), A036152 (p=173), A036153 (p=179), A036154 (p=181), A036157 (p=197), A036159 (p=211), A036161 (p=227).

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);;
    R:=List([1..Length(P)],n->OrderMod(2,P[n]));;
    Flat(Concatenation([0],List([2..10],n->List([0..R[n]-1],k->PowerMod(2,k,P[n]))))); # Muniru A Asiru, Feb 01 2019
  • Mathematica
    nn = 10; p = 2; t = p^Range[0,Prime[nn]]; Flatten[Table[If[Mod[n, p] == 0, {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, Prime[Range[nn]]}]]

A346741 Irregular triangle read by rows which is constructed in row n replacing the first A000070(n-1) terms of A336811 with their divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Jul 31 2021

Keywords

Comments

The terms in row n are also all parts of all partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For further information about the correspondence divisor/part see A336811 and A338156.

Examples

			Triangle begins:
[1];
[1],[1, 2];
[1],[1, 2],[1, 3],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1],[1, 5],[1, 3],[1, 2],[1],[1];
...
Below the table shows the correspondence divisor/part.
|---|-----------------|-----|-------|---------|-----------|-------------|
| n |                 |  1  |   2   |    3    |     4     |      5      |
|---|-----------------|-----|-------|---------|-----------|-------------|
| P |                 |     |       |         |           |             |
| A |                 |     |       |         |           |             |
| R |                 |     |       |         |           |             |
| T |                 |     |       |         |           |  5          |
| I |                 |     |       |         |           |  3 2        |
| T |                 |     |       |         |  4        |  4 1        |
| I |                 |     |       |         |  2 2      |  2 2 1      |
| O |                 |     |       |  3      |  3 1      |  3 1 1      |
| N |                 |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |                 |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
----|-----------------|-----|-------|---------|-----------|-------------|
.
|---|-----------------|-----|-------|---------|-----------|-------------|
|   |         A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |                 |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I |         A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |                 |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K |         A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |                 |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   |         A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|-----------------|-----|-------|---------|-----------|-------------|
.
.   |-------|
.   |Section|
|---|-------|---------|-----|-------|---------|-----------|-------------|
|   |   1   | A000012 |  1  |  1    |  1      |  1        |  1          |
|   |-------|---------|-----|-------|---------|-----------|-------------|
|   |   2   | A000034 |     |  1 2  |  1 2    |  1 2      |  1 2        |
|   |-------|---------|-----|-------|---------|-----------|-------------|
| D |   3   | A010684 |     |       |  1   3  |  1   3    |  1   3      |
| I |       | A000012 |     |       |  1      |  1        |  1          |
| V |-------|---------|-----|-------|---------|-----------|-------------|
| I |   4   | A069705 |     |       |         |  1 2   4  |  1 2   4    |
| S |       | A000034 |     |       |         |  1 2      |  1 2        |
| O |       | A000012 |     |       |         |  1        |  1          |
| R |-------|---------|-----|-------|---------|-----------|-------------|
| S |   5   | A010686 |     |       |         |           |  1       5  |
|   |       | A010684 |     |       |         |           |  1   3      |
|   |       | A000034 |     |       |         |           |  1 2        |
|   |       | A000012 |     |       |         |           |  1          |
|   |       | A000012 |     |       |         |           |  1          |
|---|-------|---------|-----|-------|---------|-----------|-------------|
.
In the above table both the zone of partitions and the "Link" zone are the same zones as in the table of the example section of A338156, but here in the lower zone the divisors are ordered in accordance with the sections of the set of partitions of n.
The number of rows in the j-th section of the lower zone is equal to A000041(j-1).
The divisors of the j-th section are also the parts of the j-th section of the set of partitions of n.
		

Crossrefs

Another version of A338156.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812.
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).

A133145 Period 4: repeat [1, 2, 4, 8].

Original entry on oeis.org

1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8
Offset: 0

Views

Author

Paul Curtz, Dec 16 2007

Keywords

Crossrefs

Cf. A069705. [Jaume Oliver Lafont, Mar 27 2009]

Programs

Formula

a(n) == 2*a(n-1) mod 15.
a(n) = 2^(n mod 4). - Jaume Oliver Lafont, Mar 27 2009
a(n) = A160700(A000079(n)). [Reinhard Zumkeller, Jun 10 2009]
a(n) = 2^n (mod 15). G.f.: (1+2*x)*(4*x^2+1)/ ((1-x)*(1+x)*(x^2+1)). [R. J. Mathar, Apr 13 2010]
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) = a(n-4) for n>3.
a(n) = (15-6*cos(n*Pi/2)-5*cos(n*Pi)-12*sin(n*Pi/2)-5*I*sin(n*Pi))/4. (End)

A145643 Cubefree part of n!!.

Original entry on oeis.org

1, 2, 3, 1, 15, 6, 105, 6, 35, 60, 385, 90, 5005, 1260, 75075, 315, 1276275, 210, 24249225, 525, 509233725, 11550, 11712375675, 34650, 2342475135, 900900, 2342475135, 3153150, 67931778915, 28028, 2105885146365, 14014, 2573859623335
Offset: 1

Views

Author

Artur Jasinski, Oct 15 2008

Keywords

Crossrefs

Cf. A004709, A050985, A006882, A069705 (cubefree part of 2^n), A145642.

Programs

  • Mathematica
    CubefreePart[n_Integer?Positive] := Times @@ Power @@@ ({#[[1]], Mod[ #[[2]], 3]} & /@ FactorInteger[n]); Table[CubefreePart[n!! ], {n, 1, 40}]
  • PARI
    a(n) = my(f = factor(prod(i = 0, (n-1)\2, n - 2*i))); prod(i = 1, #f~, f[i, 1]^(f[i, 2] % 3)); \\ Amiram Eldar, Sep 07 2024
  • Python
    from sympy import factorint, prod
    def A145643(n):
        return 1 if n <= 1 else prod(p**(e % 3) for p, e in factorint(prod(range(n,0,-2))).items())
    # Chai Wah Wu, Feb 04 2015
    

Formula

a(n) = A050985(A006882(n)). - Michel Marcus, May 11 2020

A178141 Period 6: repeat [4, -1, 2, -4, 1, 2].

Original entry on oeis.org

4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2, 4, -1, 2, -4, 1, 2
Offset: 0

Views

Author

Paul Curtz, May 21 2010

Keywords

Comments

Differences of the period 6: repeat [1, 5, 4, 6, 2, 3] (A070365).

Crossrefs

Programs

Formula

Mix A153727(n+1) with -A153727(n).
From Wesley Ivan Hurt, Jun 23 2016: (Start)
G.f.: (4-x+2*x^2-4*x^3+x^4+2*x^5)/(1-x^6).
a(n) = a(n-6) for n>5.
a(n) = (2 + 5*cos(n*Pi) + 7*cos(n*Pi/3) - 2*cos(2*n*Pi/3) - sqrt(3)*sin(n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3))/3. (End)

Extensions

New name from Wesley Ivan Hurt, Jun 23 2016
Showing 1-10 of 15 results. Next