cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052907 Expansion of 1/(1 - 2*x^2 - 2*x^3).

Original entry on oeis.org

1, 0, 2, 2, 4, 8, 12, 24, 40, 72, 128, 224, 400, 704, 1248, 2208, 3904, 6912, 12224, 21632, 38272, 67712, 119808, 211968, 375040, 663552, 1174016, 2077184, 3675136, 6502400, 11504640, 20355072, 36014080, 63719424, 112738304, 199467008
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) counts ordered walks of weight n on a single vertex graph containing 4 distinctly labeled loops of weights 2, 2, 3 and 3. - David Neil McGrath, Jan 16 2015
Number of compositions (ordered partitions) of n into parts 2 and 3, each of two sorts. - Joerg Arndt, Feb 14 2015

Programs

  • GAP
    a:=[1,0,2];; for n in [4..40] do a[n]:=2*(a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 14 2019
    
  • Magma
    I:=[1,0,2]; [n le 3 select I[n] else 2*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2015
    
  • Magma
    R:=PowerSeriesRing(Integers(), 36); Coefficients(R!( 1/(1 - 2*x^2 - 2*x^3))); // Marius A. Burtea, Oct 15 2019
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Z,Z),Union(Z,Prod(Z,Z))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{0,2,2},{1,0,2},40] (* Harvey P. Dale, Oct 30 2011 *)
    CoefficientList[Series[1/(1-2x^2-2x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2015 *)
  • PARI
    my(x='x+O('x^40)); Vec(1/(1-2*x^2-2*x^3)) \\ G. C. Greubel, Oct 14 2019
    
  • Sage
    def A052907_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x^2-2*x^3) ).list()
    A052907_list(40) # G. C. Greubel, Oct 14 2019
    

Formula

G.f.: 1/(1 - 2*x^2 - 2*x^3).
a(n) = 2*a(n-2) + 2*a(n-3), with a(0)=1, a(1)=0, a(2)=2.
a(n) = Sum_{alpha = RootOf(-1 + 2*z^2 + 2*z^3)} (-1/19)*(-3 - 5*alpha + 4*alpha^2)*alpha^(-1 - n).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2*k)*2^k. - Paul Barry, Oct 19 2004
Construct the matrix T with elements T(n,j) = [A^*j]*[S^*(j-1)](n) with the sequences A = (0,2,2,0,0...) and S = (0,1,0,0...) and the convolution operation *. Define S^*0 = I = (1, repeat(0)). Then T(n,j) for j>=1, counts closed n-walks containing j loops on the graph defined above in a comment, and a(n) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 16 2015

Extensions

More terms from James Sellers, Jun 05 2000