cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052917 Expansion of 1/(1-3*x-x^4).

Original entry on oeis.org

1, 3, 9, 27, 82, 249, 756, 2295, 6967, 21150, 64206, 194913, 591706, 1796268, 5453010, 16553943, 50253535, 152556873, 463123629, 1405924830, 4268028025, 12956640948, 39333046473, 119405064249, 362483220772, 1100406303264
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) equals the number of n-length words on {0,1,2,3} such that 0 appears only in a run whose length is a multiple of 4. - Milan Janjic, Feb 17 2015

Programs

  • GAP
    a:=[1,3,9,27];; for n in [5..30] do a[n]:=3*a[n-1]+a[n-4]; od; a; # G. C. Greubel, Oct 16 2019
    
  • Magma
    [n le 4 select 3^(n-1) else 3*Self(n-1)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 20 2015
    
  • Magma
    R:=PowerSeriesRing(Integers(), 27); Coefficients(R!( 1/(1-3*x-x^4) )); // Marius A. Burtea, Oct 16 2019
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Prod(Z,Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series(x^4/((1+2*x)*(2*x^3+x^2-2*x+1)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    CoefficientList[Series[1/(1-3x-x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 20 2015 *)
    RecurrenceTable[{a[0]==1, a[1]==3, a[2]==9, a[3]==27, a[n]==3a[n-1] +a[n -4]}, a[n], {n, 0, 30}] (* Bruno Berselli, Feb 20 2015 *)
  • PARI
    Vec(1/(1-3*x-x^4) + O(x^30)) \\ Michel Marcus, Feb 17 2015
    
  • Sage
    def A052917_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/(1-3*x-x^4)).list()
    A052917_list(30) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: 1/(1 - 3*x - x^4).
a(n) = 3*a(n-1) + a(n-4), with a(0)=1, a(1)=3, a(2)=9, a(3)=27.
a(n) = Sum_{alpha=RootOf(-1 + 3*z + z^4)} (1/2443)*(729 + 64*alpha + 144*alpha^2 + 324*alpha^3)*alpha^(-1-n).

Extensions

More terms from James Sellers, Jun 06 2000