cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052921 Expansion of (1 - x)/(1 - 3*x + 2*x^2 - x^3).

Original entry on oeis.org

1, 2, 4, 9, 21, 49, 114, 265, 616, 1432, 3329, 7739, 17991, 41824, 97229, 226030, 525456, 1221537, 2839729, 6601569, 15346786, 35676949, 82938844, 192809420, 448227521, 1042002567, 2422362079, 5631308624, 13091204281, 30433357674, 70748973084, 164471408185
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

First differences of A095263. - R. J. Mathar, Nov 23 2011
Partial sums of A034943 starting (1, 1, 2, 5, 12, 28, 65, ...). - Gary W. Adamson, Feb 15 2012
a(n) is the number of n (decimal) digit integers x such that all digits of x are odd and all digits of 6x are even. - Robert Israel, Apr 17 2014
a(n) is the number of words of length n over the alphabet {0,1,2} that do not contain the substrings 01 or 12 and do not end in 0. - Yiseth K. Rodríguez C., Sep 11 2020

Examples

			G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 21*x^4 + 49*x^5 + 114*x^6 + 265*x^7 + ...
		

Crossrefs

Programs

  • GAP
    a:=[1,2,4];; for n in [4..40] do a[n]:=3*a[n-1]-2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Oct 16 2019
    
  • Magma
    I:=[1,2,4]; [n le 3 select I[n] else 3*Self(n-1)-2*Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x+2*x^2-x^3) )); // Marius A. Burtea, Oct 16 2019
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Prod(Sequence(Z),Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..29);
    A052921 := proc(n): add(binomial(n+k+1, n-2*k),k=0..n+1) end: seq(A052921(n), n=0..29); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    LinearRecurrence[{3,-2,1},{1,2,4},40] (* Vincenzo Librandi, Feb 14 2012 *)
    CoefficientList[Series[(1-x)/(1-3*x+2*x^2-x^3),{x,0,30}],x] (* Harvey P. Dale, Nov 09 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)/(1 -3*x +2*x^2 -x^3)) \\ G. C. Greubel, Oct 16 2019
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1 -3*x +2*x^2 -x^3)).list()
    A077952_list(40) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: (1 - x)/(1 - 3*x + 2*x^2 - x^3).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3), with a(0)=1, a(1)=2, a(2)=4.
a(n) = Sum_{alpha=RootOf(-1 + 3*z - 2*z^2 + z^3)} (1/23)*(8 - 5*alpha + 7*alpha^2)*alpha^(-1-n).
From Paul Barry, Jun 21 2004: (Start)
Binomial transform of the Padovan sequence A000931(n+5).
a(n) = Sum_{k=0..n+1} C(n+k+1, n-2*k). (End)
a(n) = A000931(3*n + 5). - Michael Somos, Sep 18 2012
a(n) = Sum_{i=1..n+1} A000931(3*i). - David Nacin, Nov 03 2019