cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052995 Expansion of 2*x*(1 - x)/(1 - 3*x + x^2).

Original entry on oeis.org

0, 2, 4, 10, 26, 68, 178, 466, 1220, 3194, 8362, 21892, 57314, 150050, 392836, 1028458, 2692538, 7049156, 18454930, 48315634, 126491972, 331160282, 866988874, 2269806340, 5942430146, 15557484098, 40730022148, 106632582346, 279167724890, 730870592324
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Terms >=4 give solutions x to floor(phi^2*x^2) - floor(phi*x)^2 = 5, where phi =(1 + sqrt(5))/2. - Benoit Cloitre, Mar 16 2003
Except for the first term, positive values of x (or y) satisfying x^2 - 18*x*y + y^2 + 256 = 0. - Colin Barker, Feb 14 2014
a(n+1) is the square of the distance AB, where A is the point (F(n), F(n+1)), B is the 90-degree rotation of A about the origin, and F(n)=A000045(n) are the Fibonacci numbers. - Burak Muslu, Mar 24 2021

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 30.
  • B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 60-61.

Crossrefs

Bisection of A006355.
First differences of A025169.

Programs

  • Maple
    spec := [S, S=Prod(Sequence(Union(Prod(Sequence(Z),Z),Z)),Union(Z,Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{3, -1}, {0, 2, 4}, 30] (* or *)
    Nest[Append[#, 3 #[[-1]] - #[[-2]]] &, {0, 2, 4}, 27] (* or *)
    CoefficientList[Series[-2 x (-1 + x)/(1 - 3 x + x^2), {x, 0, 29}], x] (* Michael De Vlieger, Jul 18 2018 *)
  • PARI
    concat(0, Vec(2*x*(1-x)/(1-3*x+x^2) + O(x^50))) \\ Colin Barker, Mar 30 2016
    
  • PARI
    a(n) = fibonacci(max(0,2*n-1))<<1; \\ Kevin Ryde, Mar 25 2021

Formula

G.f.: -2*x*(-1 + x)/(1 - 3*x + x^2).
a(0) = 0, a(1) = 2, a(2) = 4; for n > 0, a(n) - 3*a(n+1) + a(n+2) = 0.
a(n) = A069403(n-1)+1.
a(n) = Sum(2/5*(-1 + 4*_alpha)*_alpha^(-1-n), _alpha = RootOf(_Z^2 - 3*_Z + 1)).
a(n) = 2*Fibonacci(2*n-1) = 2*A001519(n) for n > 0. - Vladeta Jovovic, Mar 19 2003
a(n+2) = F(n)^2 + F(n+3)^2 = 2*F(n+1)^2 + 2*F(n+2)^2, where F = A000045. - N. J. A. Sloane, Feb 20 2005
a(n) = 1/2*(F(2*n+8) mod F(2*n+2)) for n > 2. - Gary Detlefs, Nov 22 2010
a(n) = F(n-3)*F(n-1) + F(n)*F(n+2) for n > 0, F(-2) = -1, F(-1) = 1. - Bruno Berselli, Nov 03 2015
a(n) = (2^(-n)*((3 - sqrt(5))^n*(1 + sqrt(5)) + (-1 + sqrt(5))*(3 + sqrt(5))^n))/sqrt(5) for n > 0. - Colin Barker, Mar 30 2016
a(n) = Fibonacci(2*n-2) + Lucas(2*n-2) for n > 0. - Bruno Berselli, Oct 13 2017
a(n) = Lucas(2*n) - Fibonacci(2*n) for n > 0. - Diego Rattaggi, Mar 08 2023

Extensions

More terms from James Sellers, Jun 05 2000