Original entry on oeis.org
1, 5, 14, 32, 68, 140, 284, 572, 1148, 2300, 4604, 9212, 18428, 36860, 73724, 147452, 294908, 589820, 1179644, 2359292, 4718588, 9437180, 18874364, 37748732, 75497468, 150994940, 301989884, 603979772, 1207959548, 2415919100
Offset: 0
-
I:=[5,14]; [1] cat [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 03 2018
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)^2)/((1-x)*(1-2*x))); // Marius A. Burtea, Oct 15 2019
-
Join[{1}, LinearRecurrence[{3, -2}, {5, 14}, 50]] (* G. C. Greubel, Sep 03 2018 *)
-
m=30; v=concat([5,14], vector(m-2)); for(n=3, m, v[n] = 3*v[n-1] -2*v[n-2]); concat([1], v) \\ G. C. Greubel, Sep 03 2018
A202873
Symmetric matrix based on (1,3,7,15,31,...), by antidiagonals.
Original entry on oeis.org
1, 3, 3, 7, 10, 7, 15, 24, 24, 15, 31, 52, 59, 52, 31, 63, 108, 129, 129, 108, 63, 127, 220, 269, 284, 269, 220, 127, 255, 444, 549, 594, 594, 549, 444, 255, 511, 892, 1109, 1214, 1245, 1214, 1109, 892, 511, 1023, 1788, 2229, 2454, 2547, 2547, 2454
Offset: 1
Northwest corner:
1.....3.....7...15...31.....63
3....10....24...52...108...220
7....24....59..129...269...549
15...52...129..284...594..1214
31...108..269..594..1245..2547
-
s[k_] := -1 + 2^k;
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
Table[f[n], {n, 1, 12}]
Table[Sqrt[f[n]], {n, 1, 12}] (* A000295, Eulerian *)
Table[m[1, j], {j, 1, 12}] (* A000225 *)
Table[m[2, j], {j, 1, 12}] (* A053208 *)
A358125
Triangle read by rows: T(n, k) = 2^n - 2^(n-k-1) - 2^k, 0 <= k <= n-1.
Original entry on oeis.org
0, 1, 1, 3, 4, 3, 7, 10, 10, 7, 15, 22, 24, 22, 15, 31, 46, 52, 52, 46, 31, 63, 94, 108, 112, 108, 94, 63, 127, 190, 220, 232, 232, 220, 190, 127, 255, 382, 444, 472, 480, 472, 444, 382, 255, 511, 766, 892, 952, 976, 976, 952, 892, 766, 511, 1023, 1534, 1788, 1912, 1968, 1984, 1968, 1912, 1788, 1534, 1023
Offset: 1
Triangle begins:
0;
1, 1;
3, 4, 3;
7, 10, 10, 7;
15, 22, 24, 22, 15;
31, 46, 52, 52, 46, 31;
63, 94, 108, 112, 108, 94, 63;
127, 190, 220, 232, 232, 220, 190, 127;
255, 382, 444, 472, 480, 472, 444, 382, 255;
511, 766, 892, 952, 976, 976, 952, 892, 766, 511;
1023, 1534, 1788, 1912, 1968, 1984, 1968, 1912, 1788, 1534, 1023;
2047, 3070, 3580, 3832, 3952, 4000, 4000, 3952, 3832, 3580, 3070, 2047;
...
-
T := n -> seq(2^n - 2^(n - k - 1) - 2^k, k = 0 .. n - 1);
seq(T(n), n=1..12);
-
T[n_, k_] := 2^n - 2^(n - k - 1) - 2^k; Table[T[n, k], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* Amiram Eldar, Dec 20 2022 *)
A053207
Rows of triangle formed using Pascal's rule except begin n-th row with n and end it with n+1.
Original entry on oeis.org
0, 1, 2, 3, 3, 4, 5, 6, 7, 6, 7, 11, 13, 13, 8, 9, 18, 24, 26, 21, 10, 11, 27, 42, 50, 47, 31, 12, 13, 38, 69, 92, 97, 78, 43, 14, 15, 51, 107, 161, 189, 175, 121, 57, 16, 17, 66, 158, 268, 350, 364, 296, 178, 73, 18, 19, 83, 224, 426, 618, 714, 660, 474, 251, 91, 20
Offset: 0
Triangle begins:
0;
1, 2;
3, 3, 4;
5, 6, 7, 6;
7, 11, 13, 13, 8;
...
Showing 1-4 of 4 results.
Comments