A053221 Row sums of triangle A053218.
1, 5, 16, 43, 106, 249, 568, 1271, 2806, 6133, 13300, 28659, 61426, 131057, 278512, 589807, 1245166, 2621421, 5505004, 11534315, 24117226, 50331625, 104857576, 218103783, 452984806, 939524069, 1946157028, 4026531811, 8321499106
Offset: 1
Examples
a(4) = 4 + 7 + 12 + 20 = 43.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3311
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Programs
-
Magma
[(n+2)*2^(n-1)-n-1: n in [1..50]]; // G. C. Greubel, Sep 03 2018
-
Maple
A053221 := proc(n) (n+2)*2^(n-1)-n-1 ; end proc: # R. J. Mathar, Sep 02 2011
-
Mathematica
Table[(n + 2)*2^(n - 1) - n - 1, {n, 29}] (* or *) Rest@ CoefficientList[Series[-x (-1 + x + x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 29}], x] (* Michael De Vlieger, Sep 22 2017 *) LinearRecurrence[{6,-13,12,-4},{1,5,16,43},30] (* Harvey P. Dale, Jun 28 2021 *)
-
PARI
vector(50,n, (n+2)*2^(n-1)-n-1) \\ G. C. Greubel, Sep 03 2018
Formula
a(n) = (n+2)*2^(n-1)-n-1. - Vladeta Jovovic, Feb 28 2003
G.f.: -x*(-1+x+x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Sep 02 2011
a(n) = (1/2) * Sum_{k=1..n} Sum_{i=1..n} C(k,i) + C(n,k). - Wesley Ivan Hurt, Sep 22 2017
E.g.f.: exp(x)*(exp(x)-1)*(1+x). - Enrique Navarrete, Jul 25 2021
a(n+1) = 2*a(n) + A006127(n). - Ya-Ping Lu, Jan 01 2024
Comments