A053428 a(n) = a(n-1) + 20*a(n-2), n >= 2; a(0)=1, a(1)=1.
1, 1, 21, 41, 461, 1281, 10501, 36121, 246141, 968561, 5891381, 25262601, 143090221, 648342241, 3510146661, 16476991481, 86679924701, 416219754321, 2149818248341, 10474213334761, 53470578301581, 262954844996801
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
- A. K. Whitford, Binet's Formula Generalized, Fibonacci Quarterly, Vol. 15, No. 1, 1979, pp. 21, 24, 29.
- Index entries for linear recurrences with constant coefficients, signature (1,20).
Programs
-
Magma
[((5^(n+1))-(-4)^(n+1)) div 9: n in [0..40]]; // Vincenzo Librandi, Jun 07 2011
-
Mathematica
Join[{a=1,b=1},Table[c=b+20*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
-
PARI
a(n)=((5^(n+1))-(-4)^(n+1))/9 \\ Charles R Greathouse IV, Jun 10 2011
Formula
a(n) = ((5^(n+1)) - (-4)^(n+1))/9.
G.f.: 1/((1+4*x)*(1-5*x)). - R. J. Mathar, Nov 16 2007
Extensions
More terms from James Sellers, Feb 02 2000
Comments