cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A053404 Expansion of 1/((1+3*x)*(1-4*x)).

Original entry on oeis.org

1, 1, 13, 25, 181, 481, 2653, 8425, 40261, 141361, 624493, 2320825, 9814741, 37664641, 155441533, 607417225, 2472715621, 9761722321, 39434309773, 156574977625, 629786694901, 2508686426401, 10066126765213, 40170363882025
Offset: 0

Views

Author

Barry E. Williams, Jan 07 2000

Keywords

Comments

Hankel transform is := 1,12,0,0,0,... - Philippe Deléham, Nov 02 2008
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=2, 13*a(n-2) equals the number of 13-colored compositions of n with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Magma
    [((4^(n+1)) - (-3)^(n+1))/7: n in [0..30]]; // G. C. Greubel, Jan 16 2018
  • Maple
    seq(simplify(hypergeom([1/2 - (1/2)*n, -(1/2)*n], [-n], -48)), n = 1..40); # Peter Bala, Jul 05 2025
  • Mathematica
    CoefficientList[Series[1/((1 + 3 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 06 2014 *)
  • PARI
    a(n)=([0,1; 12,1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [lucas_number1(n,1,-12) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = ((4^(n+1))-(-3)^(n+1))/7.
a(n) = a(n-1) + 12*a(n-2), n > 1; a(0)=1, a(1)=1.
From Paul Barry, Jul 30 2004: (Start)
Convolution of 4^n and (-3)^n.
G.f.: 1/((1+3x)(1-4x)); a(n) = Sum_{k=0..n, 4^k*(-3)^(n-k)} = Sum_{k=0..n, (-3)^k*4^(n-k)}. (End)
a(n) = Sum_{k, 0<=k<=n} A109466(n,k)*(-12)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = (sum_{1<=k<=n+1, k odd} C(n+1,k)*7^(k-1))/2^n. - Vladimir Shevelev, Feb 05 2014
From Peter Bala, Jun 27 2025: (Start)
a(n) = hypergeom([1/2 - (1/2)*n, -(1/2)*n], [-n], -48) for n >= 1.
The following products telescope:
Product_{k >= 0} (1 + 12^k/a(2*k+1)) = 8.
Product_{k >= 1} (1 - 12^k/a(2*k+1)) = 4/25.
Product_{k >= 0} (1 + (-12)^k/a(2*k+1)) = 8/7.
Product_{k >= 1} (1 - (-12)^k/a(2*k+1)) = 28/25. (End)

Extensions

More terms from James Sellers, Feb 02 2000

A081297 Array T(k,n), read by antidiagonals: T(k,n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 13, 13, 11, 1, 1, 1, 21, 25, 55, 21, 1, 1, 1, 31, 41, 181, 133, 43, 1, 1, 1, 43, 61, 461, 481, 463, 85, 1, 1, 1, 57, 85, 991, 1281, 2653, 1261, 171, 1, 1, 1, 73, 113, 1891, 2821, 10501, 8425, 4039, 341, 1, 1, 1, 91, 145, 3305
Offset: 0

Views

Author

Paul Barry, Mar 17 2003

Keywords

Comments

Square array of solutions of a family of recurrences.
Rows of the array give solutions to the recurrences a(n)=a(n-1)+k(k-1)a(n-2), a(0)=a(1)=1.
Subarray of array in A072024. - Philippe Deléham, Nov 24 2013

Examples

			Rows begin
  1, 1,  1,  1,   1,    1, ...
  1, 1,  3,  5,  11,   21, ...
  1, 1,  7, 13,  55,  133, ...
  1, 1, 13, 25, 181,  481, ...
  1, 1, 21, 41, 461, 1281, ...
		

Crossrefs

Columns include A002061, A001844, A072025.
Diagonals include A081298, A081299, A081300, A081301, A081302.

Programs

  • Mathematica
    T[n_, k_]:=((n + 1)^(k + 1) - (-n)^(k + 1)) / (2n + 1); Flatten[Table[T[n - k, k], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    for(k=0, 10, for(n=0, 9, print1(((k+1)^(n+1)-(-k)^(n+1))/(2*k+1), ", "); ); print(); ) \\ Andrew Howroyd, Mar 26 2017
    
  • Python
    def T(n, k): return ((n + 1)**(k + 1) - (-n)**(k + 1)) // (2*n + 1)
    for n in range(11):
        print([T(n - k, k) for k in range(n + 1)]) # Indranil Ghosh, Mar 27 2017

Formula

T(k, n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).
Rows of the array have g.f. 1/((1+kx)(1-(k+1)x)).

Extensions

Name clarified by Andrew Howroyd, Mar 27 2017

A072024 Table by antidiagonals of T(n,k) = ((n+1)^k - (-n)^k)/(2*n+1).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 5, 7, 1, 1, 0, 1, 11, 13, 13, 1, 1, 0, 1, 21, 55, 25, 21, 1, 1, 0, 1, 43, 133, 181, 41, 31, 1, 1, 0, 1, 85, 463, 481, 461, 61, 43, 1, 1, 0, 1, 171, 1261, 2653, 1281, 991, 85, 57, 1, 1, 0, 1, 341, 4039, 8425, 10501, 2821, 1891, 113, 73, 1, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2002

Keywords

Comments

Rows of the array have g.f. x/((1+k*x)*(1-(k+1)*x)). - Philippe Deléham, Nov 24 2013

Examples

			Rows start:
0 1 1  1   1    1     1      1       1        1 ...
0 1 1  3   5   11    21     43      85      171 ...
0 1 1  7  13   55   133    463    1261     4039 ...
0 1 1 13  25  181   481   2653    8425    40261 ...
0 1 1 21  41  461  1281  10501   36121   246141 ...
0 1 1 31  61  991  2821  32551  117181  1093711 ...
0 1 1 43  85 1891  5461  84883  314245  3879331 ...
0 1 1 57 113 3305  9633 194713  734161 11638089 ...
...
		

Crossrefs

Rows include A057427, A001045, A015441, A053404, A053428, A053430, A065874, etc. Columns include A000004, A000012, A000012, A002061, A001844, A072025, etc.
Cf. A081297.

Programs

  • Magma
    [((k+1)^(n-k) - (-k)^(n-k))/(2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 27 2020
    
  • Maple
    seq(seq( ((k+1)^(n-k) - (-k)^(n-k))/(2*k+1), k=0..n), n=0..12); # G. C. Greubel, Jan 27 2020
  • Mathematica
    T[n_, k_]:= ((n + 1)^k - (-n)^k)/(2n + 1); Flatten[Join[{0}, Table[T[k, n- k], {n, 1, 15}, {k, 0, n}]]] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    for(n=0, 10, for(k=0, 9, print1(((n+1)^k-(-n)^k)/(2*n+1), ", "); ); print(); ) \\ Andrew Howroyd, Mar 26 2017
    
  • Sage
    def T(n, k): return ((n+1)^k - (-n)^k)/(2*n+1)
    [[T(k,n-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020

Formula

T(n, k) = T(n, k-1) + n*(n+1)*T(n, k-2) = A060959(A002378(n), k).
T(k, 2n) = (2n+1)*A047969(n, k+1).

A321133 a(n) = 3*a(n-1) + 10*a(n-2), n >= 2; a(0)=-1, a(1)=23.

Original entry on oeis.org

-1, 23, 59, 407, 1811, 9503, 46619, 234887, 1170851, 5861423, 29292779, 146492567, 732405491, 3662142143, 18310481339, 91552865447, 457763409731, 2288818883663, 11444090748299, 57220461081527, 286102290727571, 1430511482997983, 7152557356269659, 35762786898788807, 178813934259063011
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2019

Keywords

Crossrefs

Cf. A053428, A224473 (trimorphic number), A320468, A320469.

Programs

  • Mathematica
    LinearRecurrence[{3,10},{-1,23},30] (* Harvey P. Dale, Mar 11 2023 *)
  • PARI
    {a(n) = 3*5^n-4*(-2)^n}
    
  • PARI
    N=40; x='x+O('x^N); Vec((-1+26*x)/((1-5*x)*(1+2*x)))

Formula

a(n) = 3*5^n - 4*(-2)^n.
G.f.: (-1+26*x)/((1-5*x)*(1+2*x)).
a(n) == 7*A320469(n)*A224473(n) mod 10^n.
a(n)*A224473(n) == 7*A320469(n) mod 10^n.

A065874 a(n) = (7^(n+1) - (-6)^(n+1))/13.

Original entry on oeis.org

1, 1, 43, 85, 1891, 5461, 84883, 314245, 3879331, 17077621, 180009523, 897269605, 8457669571, 46142992981, 401365114963, 2339370820165, 19196705648611, 117450280095541, 923711917337203, 5856623681349925, 44652524209512451, 290630718826209301, 2166036735625732243
Offset: 0

Views

Author

Len Smiley, Dec 07 2001

Keywords

Comments

A second-order recurrence of promic type (integer roots).
If the number j = A002378(m) is promic (= i(i+1)), then a(n) = a(n-1) + j*a(n-2), a(0) = a(1) = 1 has a closed-form solution involving only powers of integers. The binomial coefficient sum solves the recurrence regardless of promicity (cf. GKP reference).
Hankel transform is := 1,42,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008

References

  • R. L. Graham, D. E. Knuth, O. Patashnik, "Concrete Mathematics", Addison-Wesley, 1994, p. 204.

Crossrefs

Cf. A001045 (j=2), A015441 (j=6), A053404 (j=12), A053428 (j=20), A053430 (j=30).

Programs

  • Maple
    n->sum(binomial(n-k, k)*(42)^k, k=0..n)
  • Mathematica
    LinearRecurrence[{1,42},{1,1},30] (* Harvey P. Dale, Apr 30 2017 *)
  • PARI
    a(n) = { (7^(n+1) - (-6)^(n+1))/13 } \\ Harry J. Smith, Nov 02 2009

Formula

a(n) = a(n-1) + 42a(n-2); a(0) = a(1) = 1.
G.f.: -1/((6*x+1)*(7*x-1)). - R. J. Mathar, Nov 16 2007

A320468 a(n) = a(n-1) + 20*a(n-2), n >= 2; a(0)=1, a(1)=41.

Original entry on oeis.org

1, 41, 61, 881, 2101, 19721, 61741, 456161, 1690981, 10814201, 44633821, 260917841, 1153594261, 6371951081, 29443836301, 156882857921, 745759583941, 3883416742361, 18798608421181, 96466943268401, 472439111692021, 2401777977060041, 11850560210900461, 59886119752101281, 296897323970110501
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2019

Keywords

Crossrefs

Cf. A053428, A224473 (trimorphic number), A320469, A321133.

Programs

  • PARI
    {a(n) = (-4)^(n+1)+5^(n+1)}
    
  • PARI
    N=40; x='x+O('x^N); Vec((1+40*x)/((1-5*x)*(1+4*x)))

Formula

a(n) = (-4)^(n+1) + 5^(n+1).
G.f.: (1+40*x)/((1-5*x)*(1+4*x)).
a(n) == 9*A053428(n)*A224473(n) mod 10^n.
a(n)*A224473(n) == 9*A053428(n) mod 10^n.

A320469 a(n) = 3*a(n-1) + 10*a(n-2), n >= 2; a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 13, 49, 277, 1321, 6733, 33409, 167557, 836761, 4185853, 20925169, 104634037, 523153801, 2615801773, 13078943329, 65394847717, 326973976441, 1634870406493, 8174350983889, 40871757016597, 204358780888681, 1021793912832013, 5108969547382849, 25544847770468677
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2019

Keywords

Crossrefs

Cf. A053428, A224473 (trimorphic number), A320468, A321133.

Programs

  • PARI
    {a(n) = (4*(-2)^n+3*5^n)/7}
    
  • PARI
    N=40; x='x+O('x^N); Vec((1-2*x)/((1-5*x)*(1+2*x)))

Formula

a(n) = (4*(-2)^n + 3*5^n)/7.
G.f.: (1-2*x)/((1-5*x)*(1+2*x)).
Showing 1-7 of 7 results.