cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081297 Array T(k,n), read by antidiagonals: T(k,n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 13, 13, 11, 1, 1, 1, 21, 25, 55, 21, 1, 1, 1, 31, 41, 181, 133, 43, 1, 1, 1, 43, 61, 461, 481, 463, 85, 1, 1, 1, 57, 85, 991, 1281, 2653, 1261, 171, 1, 1, 1, 73, 113, 1891, 2821, 10501, 8425, 4039, 341, 1, 1, 1, 91, 145, 3305
Offset: 0

Views

Author

Paul Barry, Mar 17 2003

Keywords

Comments

Square array of solutions of a family of recurrences.
Rows of the array give solutions to the recurrences a(n)=a(n-1)+k(k-1)a(n-2), a(0)=a(1)=1.
Subarray of array in A072024. - Philippe Deléham, Nov 24 2013

Examples

			Rows begin
  1, 1,  1,  1,   1,    1, ...
  1, 1,  3,  5,  11,   21, ...
  1, 1,  7, 13,  55,  133, ...
  1, 1, 13, 25, 181,  481, ...
  1, 1, 21, 41, 461, 1281, ...
		

Crossrefs

Columns include A002061, A001844, A072025.
Diagonals include A081298, A081299, A081300, A081301, A081302.

Programs

  • Mathematica
    T[n_, k_]:=((n + 1)^(k + 1) - (-n)^(k + 1)) / (2n + 1); Flatten[Table[T[n - k, k], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    for(k=0, 10, for(n=0, 9, print1(((k+1)^(n+1)-(-k)^(n+1))/(2*k+1), ", "); ); print(); ) \\ Andrew Howroyd, Mar 26 2017
    
  • Python
    def T(n, k): return ((n + 1)**(k + 1) - (-n)**(k + 1)) // (2*n + 1)
    for n in range(11):
        print([T(n - k, k) for k in range(n + 1)]) # Indranil Ghosh, Mar 27 2017

Formula

T(k, n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).
Rows of the array have g.f. 1/((1+kx)(1-(k+1)x)).

Extensions

Name clarified by Andrew Howroyd, Mar 27 2017

A080242 Table of coefficients of polynomials P(n,x) defined by the relation P(n,x) = (1+x)*P(n-1,x) + (-x)^(n+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 1, 4, 7, 6, 3, 1, 5, 11, 13, 9, 3, 1, 1, 6, 16, 24, 22, 12, 4, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, 10, 46, 128, 239, 314, 296, 200, 95
Offset: 0

Views

Author

Paul Barry, Feb 12 2003

Keywords

Comments

Values generate solutions to the recurrence a(n) = a(n-1) + k(k+1)* a(n-2), a(0)=1, a(1) = k(k+1)+1. Values and sequences associated with this table are included in A072024.

Examples

			Rows are {1}, {1,1,1}, {1,2,2}, {1,3,4,2,1}, {1,4,7,6,3}, ... This is the same as table A035317 with an extra 1 at the end of every second row.
Triangle begins
  1;
  1,  1,  1;
  1,  2,  2;
  1,  3,  4,  2,  1;
  1,  4,  7,  6,  3;
  1,  5, 11, 13,  9,  3,  1;
  1,  6, 16, 24, 22, 12,  4;
  1,  7, 22, 40, 46, 34, 16,  4,  1;
  1,  8, 29, 62, 86, 80, 50, 20,  5;
		

Crossrefs

Similar to the triangles A059259, A035317, A108561, A112555. Cf. A059260.
Cf. A001045 (row sums).

Programs

  • Mathematica
    Table[CoefficientList[Series[((1+x)^(n+2) -(-1)^n*x^(n+2))/(1+2*x), {x, 0, n+2}], x], {n, 0, 10}]//Flatten (* G. C. Greubel, Feb 18 2019 *)

Formula

Rows are generated by P(n,x) = ((x+1)^(n+2) - (-x)^(n+2))/(2*x+1).
The polynomials P(n,-x), n > 0, satisfy a Riemann hypothesis: their zeros lie on the vertical line Re x = 1/2 in the complex plane.
O.g.f.: (1+x*t+x^2*t)/((1+x*t)(1-t-x*t)) = 1 + (1+x+x^2)*t + (1+2x+2x^2)*t^2 + ... . - Peter Bala, Oct 24 2007
T(n,k) = if(k<=2*floor((n+1)/2), Sum_{j=0..floor((n+1)/2)} binomial(n-2j,k-2j), 0). - Paul Barry, Apr 08 2011 (This formula produces the odd numbered rows correctly, but not the even. - G. C. Greubel, Feb 22 2019)

A243201 Odd octagonal numbers indexed by triangular numbers.

Original entry on oeis.org

1, 21, 133, 481, 1281, 2821, 5461, 9633, 15841, 24661, 36741, 52801, 73633, 100101, 133141, 173761, 223041, 282133, 352261, 434721, 530881, 642181, 770133, 916321, 1082401, 1270101, 1481221, 1717633, 1981281, 2274181, 2598421, 2956161, 3349633, 3781141, 4253061, 4767841, 5328001
Offset: 0

Views

Author

Mathew Englander, Jun 01 2014

Keywords

Examples

			a(2) = 133 because the second triangular number is 3 and third odd octagonal number is 133.
a(3) = 481 because the third triangular number is 6 and the sixth odd octagonal number is 481.
a(4) = 1281 because the fourth triangular number is 10 and the tenth odd octagonal number is 1281.
		

Crossrefs

Row 5 of A059259 (coefficients of 1 + 4*n + 7*n^2 + 6*n^3 + 3*n^4 + 0*n^5 which is a formula for the within sequence).
Column 5 of A081297.
Column 6 of A072024.
Diagonal T(n + 1, n) of A219069, n > 0.

Programs

  • Magma
    [3*n^4+6*n^3+7*n^2+4*n+1: n in [0..40]]; // Bruno Berselli, Jun 03 2014
    
  • Mathematica
    Table[((3 n^2 + 3 n + 2)^2 - 1)/3, {n, 0, 39}] (* Alonso del Arte, Jun 01 2014 *)
  • Sage
    [3*n^4+6*n^3+7*n^2+4*n+1 for n in (0..40)] # Bruno Berselli, Jun 03 2014

Formula

a(n) = 3*n^4 + 6*n^3 + 7*n^2 + 4*n + 1.
a(n) = (n^2 + n + 1)*(3*n^2 + 3*n + 1).
a(n) = ((3*n^2 + 3*n + 2)^2 - 1)/3.
a(n) = A003215(n) * A002061(n + 1).
a(n) = A022522(n) / A005408(n).
a(n) = A000567(n^2 + n + 1).
a(n) = A014641((n^2 + n)/2).
a(n) = 1 + A140676(n^2 + n).
a(n) = 1 + A187156((n^2 + n + 4)/2) (empirical).
G.f.: (1 + 16*x + 38*x^2 + 16*x^3 + x^4)/(1 - x)^5. - Bruno Berselli, Jun 03 2014
E.g.f.: exp(x)*(1 + 20*x + 46*x^2 + 24*x^3 + 3*x^4). - Stefano Spezia, Apr 16 2022

A072025 a(n) = n^4 + 2*n^3 + 4*n^2 + 3*n + 1 = ((n+1)^5+n^5) / (2*n+1).

Original entry on oeis.org

1, 11, 55, 181, 461, 991, 1891, 3305, 5401, 8371, 12431, 17821, 24805, 33671, 44731, 58321, 74801, 94555, 117991, 145541, 177661, 214831, 257555, 306361, 361801, 424451, 494911, 573805, 661781, 759511, 867691, 987041, 1118305, 1262251, 1419671, 1591381
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2002

Keywords

Crossrefs

Programs

Formula

From Colin Barker, Dec 01 2015: (Start)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
G.f.: (1+x)^2*(1+4*x+x^2) / (1-x)^5.
(End)
Showing 1-4 of 4 results.