A081297
Array T(k,n), read by antidiagonals: T(k,n) = ((k+1)^(n+1)-(-k)^(n+1))/(2k+1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 13, 13, 11, 1, 1, 1, 21, 25, 55, 21, 1, 1, 1, 31, 41, 181, 133, 43, 1, 1, 1, 43, 61, 461, 481, 463, 85, 1, 1, 1, 57, 85, 991, 1281, 2653, 1261, 171, 1, 1, 1, 73, 113, 1891, 2821, 10501, 8425, 4039, 341, 1, 1, 1, 91, 145, 3305
Offset: 0
Rows begin
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 5, 11, 21, ...
1, 1, 7, 13, 55, 133, ...
1, 1, 13, 25, 181, 481, ...
1, 1, 21, 41, 461, 1281, ...
-
T[n_, k_]:=((n + 1)^(k + 1) - (-n)^(k + 1)) / (2n + 1); Flatten[Table[T[n - k, k], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 27 2017 *)
-
for(k=0, 10, for(n=0, 9, print1(((k+1)^(n+1)-(-k)^(n+1))/(2*k+1), ", "); ); print(); ) \\ Andrew Howroyd, Mar 26 2017
-
def T(n, k): return ((n + 1)**(k + 1) - (-n)**(k + 1)) // (2*n + 1)
for n in range(11):
print([T(n - k, k) for k in range(n + 1)]) # Indranil Ghosh, Mar 27 2017
A080242
Table of coefficients of polynomials P(n,x) defined by the relation P(n,x) = (1+x)*P(n-1,x) + (-x)^(n+1).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 1, 4, 7, 6, 3, 1, 5, 11, 13, 9, 3, 1, 1, 6, 16, 24, 22, 12, 4, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, 10, 46, 128, 239, 314, 296, 200, 95
Offset: 0
Rows are {1}, {1,1,1}, {1,2,2}, {1,3,4,2,1}, {1,4,7,6,3}, ... This is the same as table A035317 with an extra 1 at the end of every second row.
Triangle begins
1;
1, 1, 1;
1, 2, 2;
1, 3, 4, 2, 1;
1, 4, 7, 6, 3;
1, 5, 11, 13, 9, 3, 1;
1, 6, 16, 24, 22, 12, 4;
1, 7, 22, 40, 46, 34, 16, 4, 1;
1, 8, 29, 62, 86, 80, 50, 20, 5;
-
Table[CoefficientList[Series[((1+x)^(n+2) -(-1)^n*x^(n+2))/(1+2*x), {x, 0, n+2}], x], {n, 0, 10}]//Flatten (* G. C. Greubel, Feb 18 2019 *)
A243201
Odd octagonal numbers indexed by triangular numbers.
Original entry on oeis.org
1, 21, 133, 481, 1281, 2821, 5461, 9633, 15841, 24661, 36741, 52801, 73633, 100101, 133141, 173761, 223041, 282133, 352261, 434721, 530881, 642181, 770133, 916321, 1082401, 1270101, 1481221, 1717633, 1981281, 2274181, 2598421, 2956161, 3349633, 3781141, 4253061, 4767841, 5328001
Offset: 0
a(2) = 133 because the second triangular number is 3 and third odd octagonal number is 133.
a(3) = 481 because the third triangular number is 6 and the sixth odd octagonal number is 481.
a(4) = 1281 because the fourth triangular number is 10 and the tenth odd octagonal number is 1281.
Row 5 of
A059259 (coefficients of 1 + 4*n + 7*n^2 + 6*n^3 + 3*n^4 + 0*n^5 which is a formula for the within sequence).
Diagonal T(n + 1, n) of
A219069, n > 0.
-
[3*n^4+6*n^3+7*n^2+4*n+1: n in [0..40]]; // Bruno Berselli, Jun 03 2014
-
Table[((3 n^2 + 3 n + 2)^2 - 1)/3, {n, 0, 39}] (* Alonso del Arte, Jun 01 2014 *)
-
[3*n^4+6*n^3+7*n^2+4*n+1 for n in (0..40)] # Bruno Berselli, Jun 03 2014
A072025
a(n) = n^4 + 2*n^3 + 4*n^2 + 3*n + 1 = ((n+1)^5+n^5) / (2*n+1).
Original entry on oeis.org
1, 11, 55, 181, 461, 991, 1891, 3305, 5401, 8371, 12431, 17821, 24805, 33671, 44731, 58321, 74801, 94555, 117991, 145541, 177661, 214831, 257555, 306361, 361801, 424451, 494911, 573805, 661781, 759511, 867691, 987041, 1118305, 1262251, 1419671, 1591381
Offset: 0
-
[((n+1)^5+n^5)/(2*n+1): n in [0..40]]; // Vincenzo Librandi, Nov 23 2011
-
Table[((n+1)^5+n^5)/(2n+1),{n,0,30}] (* Vincenzo Librandi, Nov 23 2011 *)
LinearRecurrence[{5,-10,10,-5,1},{1,11,55,181,461},50] (* Harvey P. Dale, Dec 14 2019 *)
-
a(n)=n^4+2*n^3+4*n^2+3*n+1 \\ Charles R Greathouse IV, Nov 23 2011
-
Vec((1+x)^2*(1+4*x+x^2)/(1-x)^5 + O(x^100)) \\ Colin Barker, Dec 01 2015
Showing 1-4 of 4 results.
Comments