cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A176942 Champernowne primes.

Original entry on oeis.org

1234567891, 12345678910111, 123456789101112131415161
Offset: 1

Views

Author

Marco RipĂ , Jan 27 2011

Keywords

Comments

Primes formed from an initial portion 1234... of the infinite string 12345678910111213... of the concatenation of all positive integers (decimal digits of the Champernowne constant).
From Eric W. Weisstein, Jul 15 2013: (Start)
The next terms are too big to display:
a(4) = 123456789...1121131141 (235 digits)
a(5) = 123456789...6896997097 (2804 digits)
a(6) = 12345...13611362136313 (4347 digits)
a(7) = 123456789...9709971097 (37735 digits)
a(8) has more than 37800 digits. (End)
a(8) has more than 140000 digits. - Tyler Busby, Feb 12 2023

References

  • R. W. Stephan, Factors and primes in two Smarandache sequences.

Crossrefs

Cf. A007376 (infinite Barbier word = almost-natural numbers: write n in base 10 and juxtapose digits).
Cf. A033307 (decimal expansion of Champernowne constant).
Cf. A071620 (number of digits in the n-th Champernowne prime).
See A265043 for where to end the string of numbers that are being concatenated in order to get the n-th prime.

Programs

  • Mathematica
    With[{no=500},FromDigits/@Select[Table[Take[Flatten[IntegerDigits/@Range[no]],n],{n,no}],PrimeQ[FromDigits[#]]&]]  (* Harvey P. Dale, Feb 06 2011 *)
    Select[Table[Floor[N[ChampernowneNumber[10], n]*10^n], {n, 24}], PrimeQ] (* Arkadiusz Wesolowski, May 10 2012 *)

A171154 Smallest prime whose decimal expansion begins with concatenation of first n primes in descending order.

Original entry on oeis.org

2, 3203, 5323, 75323, 11753221, 131175329, 171311753203, 19171311753229, 231917131175321, 292319171311753231, 3129231917131175327, 3731292319171311753239, 41373129231917131175321, 43413731292319171311753233, 4743413731292319171311753269, 534743413731292319171311753223
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Dec 04 2009

Keywords

Comments

Sequence is conjectured to be infinite.
a(n) = "prime(n)...prime(1) R(n)".
R(n) for n>1: 03, 3, 3, 21, 9, 03, 29, 1, 31, 7, 39, 1, 33, 69, 23, 3, 59, 27, ...
It is conjectured that R(n)=1 for infinite many n.

Examples

			a(1) = 2 = prime(1) is the exceptional case, because no R(1).
a(2) = 3203 = prime(453) = "32 03", R(2)="03".
a(5) = 11753221 = prime(772902) = "prime(5)...prime(1) 21", R(5)=21.
		

References

  • Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications 2005.

Crossrefs

Programs

  • Python
    from sympy import isprime, primerange, prime
    def a(n):
        if n == 1: return 2
        c = int("".join(map(str, [p for p in primerange(2, prime(n)+1)][::-1])))
        pow10 = 10
        while True:
            c *= 10
            for b in range(1, pow10, 2):
                if b%5 == 0: continue
                if isprime(c+b):
                    return c+b
            pow10 *= 10
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Mar 12 2022

Extensions

a(14) and beyond from Michael S. Branicky, Mar 12 2022

A108471 Smallest prime with a run of n strictly increasing digits.

Original entry on oeis.org

2, 13, 127, 1237, 12347, 123457, 1234789, 12356789, 1234567891, 100123456789
Offset: 1

Views

Author

Rick L. Shepherd, Jun 04 2005

Keywords

Comments

Terms here are never considered to have leading zeros. This sequence contains A071362. a(9) = A053546(9). a(10) = A104801(1) = 10 with 0123456789 appended.

Crossrefs

A178928 Smallest semiprime containing leading sequence of n ascending numbers.

Original entry on oeis.org

10, 121, 123, 1234, 123451, 1234561, 1234567, 123456782, 12345678911, 123456789101, 123456789101117, 12345678910111229, 123456789101112133, 123456789101112131414, 1234567891011121314159
Offset: 1

Views

Author

Jonathan Vos Post, Dec 30 2010

Keywords

Comments

This is to semiprimes A001358 as A053546 is to primes A000040.

Examples

			a(1) = 10 because 10 = 2 * 5 is the smallest semiprime (or biprime, products of two primes) whose leftmost (base 10) digit is 1.
a(2) = 121 because 121 = 11^2 semiprime whose leftmost digits are 12.
a(3) = 123 since it is a semiprime already.
a(4) = 1234 = 2 * 617.
a(5) = 123451 = 41 * 3011.
a(6) = 1234561 = 211 * 5851.
		

Crossrefs

Programs

  • Mathematica
    semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@ n == 2; f[n_] := Block[{k = 0, m = FromDigits@ Flatten@ IntegerDigits@ Range@ n}, If[ semiPrimeQ@ m, , While[a = 10^(1 + Max[0, Floor@ Log10@ k]) m + k; ! semiPrimeQ@ a, k++]; m = a]; m]; Array[f, 15]
Showing 1-4 of 4 results.