cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053625 Product of 6 consecutive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 5040, 20160, 60480, 151200, 332640, 665280, 1235520, 2162160, 3603600, 5765760, 8910720, 13366080, 19535040, 27907200, 39070080, 53721360, 72681840, 96909120, 127512000, 165765600, 213127200, 271252800, 342014400, 427518000, 530122320
Offset: 0

Views

Author

Henry Bottomley, Mar 20 2000

Keywords

Crossrefs

Programs

  • GAP
    F:=Factorial;; Concatenation([0,0,0,0,0,0], List([6..30], n-> F(n)/F(n-5) )); # G. C. Greubel, Aug 27 2019
  • Magma
    I:=[0,0,0,0,0,0,720]; [n le 7 select I[n] else 7*Self(n-1) -21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6) +Self(n-7): n in [1..30]]; // Vincenzo Librandi, Apr 28 2012
    
  • Maple
    seq(combinat[numbperm](n, 6), n=0..31); # Zerinvary Lajos, Apr 26 2007
  • Mathematica
    CoefficientList[Series[720*x^6/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Apr 28 2012 *)
    Times@@@Partition[Range[-5,30],6,1] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,720},30] (* Harvey P. Dale, Nov 13 2015 *)
    Pochhammer[Range[30]-6, 6] (* G. C. Greubel, Aug 27 2019 *)
  • PARI
    a(n)=factorback([n-5..n]) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [rising_factorial(n-5,6) for n in (0..30)] # G. C. Greubel, Aug 27 2019
    

Formula

a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5) = n!/(n-6)! = A052787(n)*(n-6) = a(n-1)*n/(n-6).
E.g.f.: x^6*exp(x).
a(n) = 720 * A000579(n). - Zerinvary Lajos, Apr 26 2007
For n > 5: a(n) = A173333(n, n-6). - Reinhard Zumkeller, Feb 19 2010
G.f.: 720*x^6/(1-x)^7. - Colin Barker, Mar 27 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Vincenzo Librandi, Apr 28 2012
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=6} 1/a(n) = 1/600.
Sum_{n>=6} (-1)^n/a(n) = 4*log(2)/15 - 661/3600. (End)