A053625 Product of 6 consecutive integers.
0, 0, 0, 0, 0, 0, 720, 5040, 20160, 60480, 151200, 332640, 665280, 1235520, 2162160, 3603600, 5765760, 8910720, 13366080, 19535040, 27907200, 39070080, 53721360, 72681840, 96909120, 127512000, 165765600, 213127200, 271252800, 342014400, 427518000, 530122320
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
GAP
F:=Factorial;; Concatenation([0,0,0,0,0,0], List([6..30], n-> F(n)/F(n-5) )); # G. C. Greubel, Aug 27 2019
-
Magma
I:=[0,0,0,0,0,0,720]; [n le 7 select I[n] else 7*Self(n-1) -21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6) +Self(n-7): n in [1..30]]; // Vincenzo Librandi, Apr 28 2012
-
Maple
seq(combinat[numbperm](n, 6), n=0..31); # Zerinvary Lajos, Apr 26 2007
-
Mathematica
CoefficientList[Series[720*x^6/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Apr 28 2012 *) Times@@@Partition[Range[-5,30],6,1] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,720},30] (* Harvey P. Dale, Nov 13 2015 *) Pochhammer[Range[30]-6, 6] (* G. C. Greubel, Aug 27 2019 *)
-
PARI
a(n)=factorback([n-5..n]) \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[rising_factorial(n-5,6) for n in (0..30)] # G. C. Greubel, Aug 27 2019
Formula
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5) = n!/(n-6)! = A052787(n)*(n-6) = a(n-1)*n/(n-6).
E.g.f.: x^6*exp(x).
a(n) = 720 * A000579(n). - Zerinvary Lajos, Apr 26 2007
For n > 5: a(n) = A173333(n, n-6). - Reinhard Zumkeller, Feb 19 2010
G.f.: 720*x^6/(1-x)^7. - Colin Barker, Mar 27 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Vincenzo Librandi, Apr 28 2012
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=6} 1/a(n) = 1/600.
Sum_{n>=6} (-1)^n/a(n) = 4*log(2)/15 - 661/3600. (End)