cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A173333 Triangle read by rows: T(n, k) = n! / k!, 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 120, 60, 20, 5, 1, 720, 360, 120, 30, 6, 1, 5040, 2520, 840, 210, 42, 7, 1, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 19 2010

Keywords

Comments

From Wolfdieter Lang, Jun 27 2012: (Start)
T(n-1,k), k=1,...,n-1, gives the number of representative necklaces with n beads (C_N symmetry) of n+1-k distinct colors, say c[1],c[2],...,c[n-k+1], corresponding to the color signature determined by the partition k,1^(n-k) of n. The representative necklaces have k beads of color c[1]. E.g., n=4, k=2: partition 2,1,1, color signature (parts as exponents) c[1]c[1]c[2]c[3], 3=T(3,2) necklaces (write j for color c[j]): cyclic(1123), cyclic(1132) and cyclic(1213). See A212359 for the numbers for general partitions or color signatures. (End)

Examples

			Triangle starts:
n\k      1       2      3      4     5    6   7  8  9 10 ...
1        1
2        2       1
3        6       3      1
4       24      12      4      1
5      120      60     20      5     1
6      720     360    120     30     6    1
7     5040    2520    840    210    42    7   1
8    40320   20160   6720   1680   336   56   8  1
9   362880  181440  60480  15120  3024  504  72  9  1
10 3628800 1814400 604800 151200 30240 5040 720 90 10  1
... - _Wolfdieter Lang_, Jun 27 2012
		

Crossrefs

Row sums give A002627.
Central terms give A006963:
T(2*n-1,n) = A006963(n+1).
T(2*n,n) = A001813(n).
T(2*n,n+1) = A001761(n).
1 < k <= n: T(n,k) = T(n,k-1) / k.
1 <= k <= n: T(n+1,k) = A119741(n,n-k+1).
1 <= k <= n: T(n+1,k+1) = A162995(n,k).
T(n,1) = A000142(n).
T(n,2) = A001710(n) for n>1.
T(n,3) = A001715(n) for n>2.
T(n,4) = A001720(n) for n>3.
T(n,5) = A001725(n) for n>4.
T(n,6) = A001730(n) for n>5.
T(n,7) = A049388(n-7) for n>6.
T(n,8) = A049389(n-8) for n>7.
T(n,9) = A049398(n-9) for n>8.
T(n,10) = A051431(n) for n>9.
T(n,n-7) = A159083(n+1) for n>7.
T(n,n-6) = A053625(n+1) for n>6.
T(n,n-5) = A052787(n) for n>5.
T(n,n-4) = A052762(n) for n>4.
T(n,n-3) = A007531(n) for n>3.
T(n,n-2) = A002378(n-1) for n>2.
T(n,n-1) = A000027(n) for n>1.
T(n,n) = A000012(n).

Programs

  • Haskell
    a173333 n k = a173333_tabl !! (n-1) !! (k-1)
    a173333_row n = a173333_tabl !! (n-1)
    a173333_tabl = map fst $ iterate f ([1], 2)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    Table[n!/k!, {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

Formula

E.g.f.: (exp(x*y) - 1)/(x*(1 - y)). - Olivier Gérard, Jul 07 2011
T(n,k) = A094587(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012

A045619 Numbers that are the products of 2 or more consecutive integers.

Original entry on oeis.org

0, 2, 6, 12, 20, 24, 30, 42, 56, 60, 72, 90, 110, 120, 132, 156, 182, 210, 240, 272, 306, 336, 342, 360, 380, 420, 462, 504, 506, 552, 600, 650, 702, 720, 756, 812, 840, 870, 930, 990, 992, 1056, 1122, 1190, 1260, 1320, 1332, 1406, 1482, 1560, 1640, 1680
Offset: 1

Views

Author

Keywords

Comments

Erdős and Selfridge proved that, apart from the first term, these are never perfect powers (A001597). - T. D. Noe, Oct 13 2002
Numbers of the form x!/y! with y+1 < x. - Reinhard Zumkeller, Feb 20 2008

Examples

			30 is in the sequence as 30 = 5*6 = 5*(5+1). - _David A. Corneth_, Oct 19 2021
		

Crossrefs

Programs

  • Mathematica
    maxNum = 1700; lst = {}; For[i = 1, i <= Sqrt[maxNum], i++, j = i + 1; prod = i*j; While[prod < maxNum, AppendTo[lst, prod]; j++; prod *= j]]; lst = Union[lst]
  • PARI
    list(lim)=my(v=List([0]),P,k=1,t); while(1, k++; P=binomial('n+k-1,k)*k!; if(subst(P,'n,1)>lim, break); for(n=1,lim, t=eval(P); if(t>lim, next(2)); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Nov 16 2021
  • Python
    import heapq
    from sympy import sieve
    def aupton(terms, verbose=False):
        p = 6; h = [(p, 2, 3)]; nextcount = 4; aset = {0, 2}
        while len(aset) < terms:
            (v, s, l) = heapq.heappop(h)
            aset.add(v)
            if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i]")
            if v >= p:
                p *= nextcount
                heapq.heappush(h, (p, 2, nextcount))
                nextcount += 1
            v //= s; s += 1; l += 1; v *= l
            heapq.heappush(h, (v, s, l))
        return sorted(aset)
    print(aupton(52)) # Michael S. Branicky, Oct 19 2021
    

Formula

a(n) = A000142(A137911(n))/A000142(A137912(n)-1) for n>1. - Reinhard Zumkeller, Feb 27 2008
Since the oblong numbers (A002378) have relative density of 100%, we have a(n) ~ (n-1) n ~ n^2. - Daniel Forgues, Mar 26 2012
a(n) = n^2 - 2*n^(5/3) + O(n^(4/3)). - Charles R Greathouse IV, Aug 27 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 20 2000
More terms from Reinhard Zumkeller, Feb 27 2008
Incorrect program removed by David A. Corneth, Oct 19 2021

A265609 Array read by ascending antidiagonals: A(n,k) the rising factorial, also known as Pochhammer symbol, for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 6, 0, 1, 4, 12, 24, 24, 0, 1, 5, 20, 60, 120, 120, 0, 1, 6, 30, 120, 360, 720, 720, 0, 1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0
Offset: 0

Views

Author

Peter Luschny, Dec 19 2015

Keywords

Comments

The Pochhammer function is defined P(x,n) = x*(x+1)*...*(x+n-1). By convention P(0,0) = 1.
From Antti Karttunen, Dec 19 2015: (Start)
Apart from the initial row of zeros, if we discard the leftmost column and divide the rest of terms A(n,k) with (n+k) [where k is now the once-decremented column index of the new, shifted position] we get the same array back. See the given recursive formula.
When the numbers in array are viewed in factorial base (A007623), certain repeating patterns can be discerned, at least in a few of the topmost rows. See comment in A001710 and arrays A265890, A265892. (End)
A(n,k) is the k-th moment (about 0) of a gamma (Erlang) distribution with shape parameter n and rate parameter 1. - Geoffrey Critzer, Dec 24 2018

Examples

			Square array A(n,k) [where n=row, k=column] is read by ascending antidiagonals as:
A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
Array starts:
n\k [0  1   2    3     4      5        6         7          8]
--------------------------------------------------------------
[0] [1, 0,  0,   0,    0,     0,       0,        0,         0]
[1] [1, 1,  2,   6,   24,   120,     720,     5040,     40320]
[2] [1, 2,  6,  24,  120,   720,    5040,    40320,    362880]
[3] [1, 3, 12,  60,  360,  2520,   20160,   181440,   1814400]
[4] [1, 4, 20, 120,  840,  6720,   60480,   604800,   6652800]
[5] [1, 5, 30, 210, 1680, 15120,  151200,  1663200,  19958400]
[6] [1, 6, 42, 336, 3024, 30240,  332640,  3991680,  51891840]
[7] [1, 7, 56, 504, 5040, 55440,  665280,  8648640, 121080960]
[8] [1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200]
.
Seen as a triangle, T(n, k) = Pochhammer(n - k, k), the first few rows are:
   [0] 1;
   [1] 1, 0;
   [2] 1, 1,  0;
   [3] 1, 2,  2,   0;
   [4] 1, 3,  6,   6,    0;
   [5] 1, 4, 12,  24,   24,    0;
   [6] 1, 5, 20,  60,  120,  120,     0;
   [7] 1, 6, 30, 120,  360,  720,   720,     0;
   [8] 1, 7, 42, 210,  840, 2520,  5040,  5040,     0;
   [9] 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0.
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 355.

Crossrefs

Triangle giving terms only up to column k=n: A124320.
Row 0: A000007, row 1: A000142, row 3: A001710 (from k=1 onward, shifted two terms left).
Column 0: A000012, column 1: A001477, column 2: A002378, columns 3-7: A007531, A052762, A052787, A053625, A159083 (shifted 2 .. 6 terms left respectively, i.e. without the extra initial zeros), column 8: A239035.
Row sums of the triangle: A000522.
A(n, n) = A000407(n-1) for n>0.
2^n*A(1/2,n) = A001147(n).
Cf. also A007623, A008279 (falling factorial), A173333, A257505, A265890, A265892.

Programs

  • Maple
    for n from 0 to 8 do seq(pochhammer(n,k), k=0..8) od;
  • Mathematica
    Table[Pochhammer[n, k], {n, 0, 8}, {k, 0, 8}]
  • Sage
    for n in (0..8): print([rising_factorial(n,k) for k in (0..8)])
    
  • Scheme
    (define (A265609 n) (A265609bi (A025581 n) (A002262 n)))
    (define (A265609bi row col) (if (zero? col) 1 (* (+ row col -1) (A265609bi row (- col 1)))))
    ;; Antti Karttunen, Dec 19 2015

Formula

A(n,k) = Gamma(n+k)/Gamma(n) for n > 0 and n^k for n=0.
A(n,k) = Sum_{j=0..k} n^j*S1(k,j), S1(n,k) the Stirling cycle numbers A132393(n,k).
A(n,k) = (k-1)!/(Sum_{j=0..k-1} (-1)^j*binomial(k-1, j)/(j+n)) for n >= 1, k >= 1.
A(n,k) = (n+k-1)*A(n,k-1) for k >= 1, A(n,0) = 1. - Antti Karttunen, Dec 19 2015
E.g.f. for row k: 1/(1-x)^k. - Geoffrey Critzer, Dec 24 2018
A(n, k) = FallingFactorial(n + k - 1, k). - Peter Luschny, Mar 22 2022
G.f. for row n as a continued fraction of Stieltjes type: 1/(1 - n*x/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - ... ))))))). See Wall, Chapter XVIII, equation 92.5. Cf. A226513. - Peter Bala, Aug 27 2023

A239035 Product of 8 consecutive integers. a(n) = RisingFactorial(n, 8).

Original entry on oeis.org

0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200, 518918400, 980179200, 1764322560, 3047466240, 5079110400, 8204716800, 12893126400, 19769460480, 29654190720, 43609104000, 62990928000, 89513424000, 125318793600, 173059286400
Offset: 0

Views

Author

Michel Marcus, Mar 09 2014

Keywords

Crossrefs

Cf. Product of n consecutive integers: A002378 (n=2), A007531 (n=3), A052762 (n=4), A052787 (n=5), A053625 (n=6), A159083 (n=7).

Programs

  • Magma
    [(n^4+14*n^3+63*n^2+98*n+28)^2-(28+8*n)^2: n in [0..30]]; // Vincenzo Librandi, Mar 11 2014
    
  • Mathematica
    CoefficientList[Series[40320 x/(1 - x)^9, {x, 0, 30}], x] (* Vincenzo Librandi, Mar 11 2014 *)
  • PARI
    a(n) = prod(k=0, 7, n+k);
    
  • PARI
    concat([0], Vec(40320*x/(1-x)^9  + O(x^100))) \\ Colin Barker, Mar 09 2014
    
  • Sage
    print([rising_factorial(n, 8) for n in range(23)]) # Peter Luschny, Mar 22 2022

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7).
a(n) = (n^4+14*n^3+63*n^2+98*n+28)^2 - (28+8*n)^2. (see Thill link).
G.f.: 40320*x / (1-x)^9. - Colin Barker, Mar 09 2014
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/35280.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(2)/315 - 1163/66150. (End)

A159083 Products of 7 consecutive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 17297280, 32432400, 57657600, 98017920, 160392960, 253955520, 390700800, 586051200, 859541760, 1235591280, 1744364160, 2422728000, 3315312000, 4475671200, 5967561600, 7866331200
Offset: 0

Views

Author

Zerinvary Lajos, Apr 05 2009

Keywords

Crossrefs

Equals A008279(n,7) (for n>=7).

Programs

  • Magma
    I:=[0,0,0,0,0,0,0,5040]; [n le 8 select I[n] else 8*Self(n-1) - 28*Self(n-2) +56*Self(n-3) -70*Self(n-4) +56*Self(n-5) -28*Self(n-6) +8*Self(n-7) -Self(n-8): n in [1..30]]; // G. C. Greubel, Jun 28 2018
  • Maple
    G(x):=x^7*exp(x): f[0]:=G(x): for n from 1 to 36 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..33);
  • Mathematica
    Table[Times@@(n+Range[0,6]),{n,-6,25}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,0,0,0,0,0,0,5040},30] (* Harvey P. Dale, Apr 07 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0,0,0,0,0,0], Vec(5040*x^7/(1-x)^8)) \\ G. C. Greubel, Jun 28 2018
    

Formula

E.g.f.: x^7*exp(x).
For n>=8: a(n) = A173333(n,n-7). - Reinhard Zumkeller, Feb 19 2010
G.f.: 5040*x^7/(1-x)^8. - Colin Barker, Mar 27 2012
From Amiram Eldar, Mar 08 2022: (Start)
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6) = n!/(n-7)!.
Sum_{n>=7} 1/a(n) = 1/4320.
Sum_{n>=7} (-1)^(n+1)/a(n) = 4*log(2)/45 - 1327/21600. (End)

A162995 A scaled version of triangle A162990.

Original entry on oeis.org

1, 3, 1, 12, 4, 1, 60, 20, 5, 1, 360, 120, 30, 6, 1, 2520, 840, 210, 42, 7, 1, 20160, 6720, 1680, 336, 56, 8, 1, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2009

Keywords

Comments

We get this scaled version of triangle A162990 by dividing the coefficients in the left hand columns by their 'top-values' and then taking the square root.
T(n,k) = A173333(n+1,k+1), 1 <= k <= n. - Reinhard Zumkeller, Feb 19 2010
T(n,k) = A094587(n+1,k+1), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012

Examples

			The first few rows of the triangle are:
[1]
[3, 1]
[12, 4, 1]
[60, 20, 5, 1]
		

Crossrefs

Cf. A094587.
A056542(n) equals the row sums for n>=1.
A001710, A001715, A001720, A001725, A001730, A049388, A049389, A049398, A051431 are related to the left hand columns.
A000012, A009056, A002378, A007531, A052762, A052787, A053625 and A159083 are related to the right hand columns.

Programs

  • Haskell
    a162995 n k = a162995_tabl !! (n-1) !! (k-1)
    a162995_row n = a162995_tabl !! (n-1)
    a162995_tabl = map fst $ iterate f ([1], 3)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
  • Maple
    a := proc(n, m): (n+1)!/(m+1)! end: seq(seq(a(n, m), m=1..n), n=1..9); # Johannes W. Meijer, revised Nov 23 2012
  • Mathematica
    Table[(n+1)!/(m+1)!, {n, 10}, {m, n}] (* Paolo Xausa, Mar 31 2024 *)

Formula

a(n,m) = (n+1)!/(m+1)! for n = 1, 2, 3, ..., and m = 1, 2, ..., n.

A001096 a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 726, 5047, 20168, 60489, 151210, 332651, 665292, 1235533, 2162174, 3603615, 5765776, 8910737, 13366098, 19535059, 27907220, 39070101, 53721382, 72681863, 96909144, 127512025, 165765626, 213127227, 271252828, 342014429
Offset: 0

Views

Author

N. J. A. Sloane, Ray Wills (rwills(AT)vmprofs.estec.esa.nl)

Keywords

Crossrefs

Equals A053625(n) + n.

Programs

  • GAP
    List([0..35], n-> n + 720*Binomial(n,6)); # G. C. Greubel, Aug 26 2019
  • Magma
    [n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5): n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
    
  • Maple
    seq(n + 6!*binomial(n,6), n=0..35); # G. C. Greubel, Aug 26 2019
  • Mathematica
    Table[n + 6!*Binomial[n,6], {n,0,35}] (* G. C. Greubel, Aug 26 2019 *)
  • PARI
    vector(35, n, (n-1) + 6!*binomial(n-1,6)) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    [n + 720*binomial(n,6) for n in (0..35)] # G. C. Greubel, Aug 26 2019
    

Formula

G.f.: x*(1 -5*x +10*x^2 -10*x^3 +5*x^4 +719*x^5)/(1-x)^7. - Ralf Stephan, Dec 30 2002
From G. C. Greubel, Aug 26 2019: (Start)
a(n) = n + 6!*binomial(n,6).
E.g.f.: x*(1 + x^5)*exp(x). (End)

Extensions

More terms from James Sellers, Sep 19 2000

A054779 6n*(6n-1)*(6n-2)*(6n-3)*(6n-4)*(6n-5).

Original entry on oeis.org

0, 720, 665280, 13366080, 96909120, 427518000, 1402410240, 3776965920, 8835488640, 18595558800, 36045979200, 65418312960, 112492013760, 184933148400, 292666711680, 448282533600, 667474778880, 969515038800, 1377759015360, 1920186797760, 2629976731200
Offset: 0

Views

Author

Henry Bottomley, May 19 2000

Keywords

References

  • R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Programs

  • Mathematica
    Table[Times@@(6n-Range[0,5]),{n,0,20}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,720,665280,13366080,96909120,427518000,1402410240},30] (* Harvey P. Dale, Nov 24 2015 *)
  • PARI
    concat(0, Vec(-720*x*(462*x^5+9142*x^4+24017*x^3+12117*x^2+917*x+1)/(x-1)^7 + O(x^100))) \\ Colin Barker, Sep 13 2014

Formula

a(n)= A053625(6n)=(6n)!/(6(n-1))!.
Sum_{n>0} 1/a(n) = (192*log 2 - 81*log 3 - 7*Pi*sqrt 3)/4320 (cf. Tijdeman).
G.f.: -720*x*(462*x^5+9142*x^4+24017*x^3+12117*x^2+917*x+1) / (x-1)^7. - Colin Barker, Sep 13 2014

Extensions

More terms from Colin Barker, Sep 13 2014
Showing 1-8 of 8 results.