A053763 a(n) = 2^(n^2 - n).
1, 1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936, 4722366482869645213696, 1237940039285380274899124224, 1298074214633706907132624082305024, 5444517870735015415413993718908291383296, 91343852333181432387730302044767688728495783936
Offset: 0
Examples
a(2)=4 because there are four 2 x 2 nilpotent matrices over GF(2):{{0,0},{0,0}},{{0,1},{0,0}},{{0,0},{1,0}},{{1,1,},{1,1}} where 1+1=0. - _Geoffrey Critzer_, Oct 05 2012
References
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 521.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 5, Eq. (1.1.5).
Links
- T. D. Noe, Table of n, a(n) for n = 0..35
- Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
- N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., 2 (1958), 499-504.
- Murray Gerstenhaber, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., Vol. 5 (1961), 330-333.
- Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
- Greg Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Annals of mathematics, Second Series, Vol. 156, No. 3 (2002), pp. 835-866, arXiv preprint, arXiv:math/0008184 [math.CO], 2000-2001 (see Th. 3).
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Crossrefs
Programs
-
Maple
seq(4^(binomial(n, n-2)), n=0..12); # Zerinvary Lajos, Jun 16 2007 a:=n->mul(4^j, j=1..n-1): seq(a(n), n=0..12); # Zerinvary Lajos, Oct 03 2007
-
Mathematica
Table[2^(2*Binomial[n,2]), {n,0,20}] (* Geoffrey Critzer, Oct 04 2012 *)
-
PARI
a(n)=1<<(n^2-n) \\ Charles R Greathouse IV, Nov 20 2012
-
Python
def A053763(n): return 1<
Chai Wah Wu, Jul 05 2024
Formula
Sequence given by the Hankel transform (see A001906 for definition) of A059231 = {1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, ...}; example: det([1, 1, 5, 29; 1, 5, 29, 185; 5, 29, 185, 1257; 29, 185, 1257, 8925]) = 4^6 = 4096. - Philippe Deléham, Aug 20 2005
a(n) = 4^binomial(n, n-2). - Zerinvary Lajos, Jun 16 2007
a(n) = Sum_{i=0..n^2-n} binomial(n^2-n, i). - Rick L. Shepherd, Dec 24 2008
G.f. A(x) satisfies: A(x) = 1 + x * A(4*x). - Ilya Gutkovskiy, Jun 04 2020
Sum_{n>=1} 1/a(n) = A319016. - Amiram Eldar, Oct 27 2020
Sum_{n>=0} a(n)*u^n/A002884(n) = Product_{r>=1} 1/(1-u/q^r). - Geoffrey Critzer, Oct 28 2021
Comments