A053973
Squares composed of digits {6,7,9}.
Original entry on oeis.org
9, 676, 69696, 97969, 9696996, 9697699776769, 77797697969777769, 776797677679677696, 6776696769676669969, 9767769967769766976, 97667999767779769677969, 7676999976999997667777796, 69997676676669667699797969, 67976976676979976697777676769, 96667776776767999797799699976676
Offset: 1
-
Flatten[Table[Select[FromDigits/@Tuples[{6,7,9},i],IntegerQ[Sqrt[#]]&],{i,23}]] (* Harvey P. Dale, Dec 07 2014 *)
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 14 2005
a(12)-a(15) from Mishima's website, added by
Max Alekseyev, Nov 30 2017
A379602
a(n) is the least n-digit number whose square contains only digits greater than 5.
Original entry on oeis.org
3, 26, 264, 3114, 25824, 260167, 2639867, 25845676, 260147437, 2582245083, 25843178924, 258241744863, 2582010592114, 25825761924437, 258218875510676, 2581990857627114, 25820083014911063, 258199298347206526, 2581988959445543367, 25819892911624938937, 258198891881411585714
Offset: 1
a(3) = 264 because among all 3-digit numbers, 264 is the smallest whose square 69696 contains only digits greater than 5.
-
f[m_] := For[k = Ceiling@Sqrt[100^m/15], k < 10^m - 1, k++, If[Min@IntegerDigits[k^2] > 5, Return[k];]]; Table[f[m], {m, 10}]
A379603
a(n) is the largest n-digit number whose square contains only digits greater than 5.
Original entry on oeis.org
3, 83, 937, 9833, 98336, 998333, 9994833, 99983333, 999939437, 9999833333, 99998333336, 999998333333, 9999983333336, 99999983333333, 999999833333336, 9999999833333333, 99999998333333336, 999999998333333333, 9999999983333333336, 99999999983333333333, 999999999833333333336
Offset: 1
a(3) = 937 because among all 3-digit numbers, 937 is the largest whose square 877969 contains only digits greater than 5.
-
f[m_] := For[k = 10^m - 1, k > 10^(m - 1), k--, If[Min@IntegerDigits[k^2] > 5, Return[k];]];
Table[f[m], {m, 10}]
Showing 1-3 of 3 results.
Comments