A054091 Row sums of A054090.
1, 2, 4, 10, 32, 130, 652, 3914, 27400, 219202, 1972820, 19728202, 217010224, 2604122690, 33853594972, 473950329610, 7109254944152, 113748079106434, 1933717344809380, 34806912206568842, 661331331924808000, 13226626638496160002, 277759159408419360044
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Shuzhen Lv and Philip B. Zhang, Joint equidistributions of mesh patterns 123 and 321 with symmetric and antipodal shadings, arXiv:2501.00357 [math.CO], 2024. See p. 15.
Programs
-
Magma
[n le 2 select n else (n-1)*Self(n-1) -(n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 23 2022
-
Maple
a:= n-> `if`( n=0, 1, add(2*(n-1)!/j!, j=0..n-1)): seq(a(n), n=0..18); # Zerinvary Lajos, Oct 20 2006 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, 2+(n-1)*a(n-1)) end: seq(a(n), n=0..23); # Alois P. Heinz, Jun 23 2022
-
Mathematica
Table[If[n==0, 1, 2*(n-1)!*Sum[1/j!, {j,0,n-1}]], {n,0,30}] (* G. C. Greubel, Jun 23 2022 *)
-
PARI
{a(n)= local(A); if(n<1, n==0, A=vector(n); A[1]=2; for(k=1, n-1, A[k+1]=k*A[k]+2); A[n])} /* Michael Somos, Nov 19 2006 */
-
PARI
{a(n)= if(n<1, n==0, n--; n!*polcoeff( 2*exp(x+x*O(x^n))/(1-x), n))} /* Michael Somos, Nov 19 2006 */
-
SageMath
[1]+[2*factorial(n-1)*sum(1/factorial(j) for j in (0..n-1)) for n in (1..30)] # G. C. Greubel, Jun 23 2022
Formula
a(n+1) = 2*A000522(n).
a(n+1) = Sum(2*n!/j!, j=0..n). - Zerinvary Lajos, Oct 20 2006
a(n) = 2*floor(e*(n-1)!), n>1. - Gary Detlefs, May 20 2010
a(n) = n*a(n-1) - (n-2)*a(n-2), a(0)=1, a(1)=2. - Vincenzo Librandi, Feb 23 2012
Comments