cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054108 a(n) = (-1)^(n+1)*Sum_{k=0..n+1}(-1)^k*binomial(2*k,k).

Original entry on oeis.org

1, 5, 15, 55, 197, 727, 2705, 10165, 38455, 146301, 559131, 2145025, 8255575, 31861025, 123256495, 477823895, 1855782325, 7219352975, 28125910825, 109720617995, 428537256445, 1675561707275, 6557869020325, 25689734662775
Offset: 0

Views

Author

Keywords

Comments

p divides a((p-3)/2) for p in A045468 (primes congruent to {1, 4} mod 5). - Alexander Adamchuk, Jul 05 2006
The sequence 1,1,5,15,55,... has general term sum{k=0..n, (-1)^(n-k)*C(2k,k)}. Its Hankel transform is A082761. - Paul Barry, Apr 10 2007
From Paul Barry, Mar 29 2010: (Start)
The sequence 1,1,5,15,... has g.f. 1/((1+x)*sqrt(1-4x)).
The doubled sequence 1,1,1,1,5,5,... has e.g.f. dif(int((sin(x-t)+cos(x-t))*Bessel_I(0,2t),t,0,x),x). (End)

Crossrefs

T(2n, n), array T as in A054106.

Programs

  • Mathematica
    Table[Sum[(-1)^(k+n)*((2k)!/(k!)^2),{k,0,n}], {n,1,50}] (* Alexander Adamchuk, Jul 05 2006 *)
    CoefficientList[Series[(1/Sqrt[1-4*x]/(1+x)-1)/x, {x, 0, 20}], x]
    (* or *)
    Table[(-1)^(n+1)*Sum[(-1)^k*Binomial[2*k, k], {k, 0, n+1}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2012 *)
    Round@Table[Binomial[2 (n + 2), n + 2] Hypergeometric2F1[1, n + 5/2, n + 3, -4] - (-1)^n/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
  • PARI
    a(n)=(-1)^(n+1)*sum(k=0,n+1,(-1)^k*binomial(2*k,k))
    
  • Python
    from math import comb
    def A054108(n): return (1 if n % 2 else -1)*sum((-1 if k % 2 else 1)*comb(2*k,k) for k in range(n+2)) # Chai Wah Wu, Jan 19 2022

Formula

a(n) = C(2n, n) - a(n-1) with a(0)=1. - Labos Elemer, Apr 26 2003
C(2n,n) - C(2n-2,n-1) + ... +(-1)^(k+n)*C(2k,k)+ ... + (-1)^(1+n)*C(2,1) + (-1)^n*C(0,0), where C(2k,k)=(2k)!/(k!)^2 - central binomial coefficients A000984[k]. - Alexander Adamchuk, Jul 05 2006
a(n) = Sum_{k=0..n} (-1)^(k+n)*((2k)!/(k!)^2). - Alexander Adamchuk, Jul 05 2006
G.f.: (1/sqrt(1-4*x)/(1+x)-1)/x = (-1 + 2/(U(0)-2*x))/(1+x) where U(k)= 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jun 27 2012
a(n) ~ 2^(2*n+4)/(5*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 06 2012
Recurrence: (n+1)*a(n) = (3*n+1)*a(n-1) + 2*(2*n+1)*a(n-2). - Vaclav Kotesovec, Nov 06 2012

Extensions

Formula from Benoit Cloitre, Sep 29 2002
Definition corrected by Vaclav Kotesovec, Nov 06 2012

A167478 Expansion of (1-2x+6x^2-x^3)/(1-3x+x^2)^2.

Original entry on oeis.org

1, 4, 19, 75, 264, 869, 2741, 8396, 25175, 74271, 216336, 623689, 1782889, 5060500, 14277019, 40070259, 111954456, 311555501, 863978525, 2388417116, 6584117471, 18104432199, 49667825184, 135974484625, 371543306449, 1013443026724
Offset: 0

Views

Author

Paul Barry, Nov 04 2009

Keywords

Comments

Hankel transform of A054109.

Crossrefs

Cf. A054109.

Programs

  • Mathematica
    LinearRecurrence[{6, -11, 6, -1}, {1, 4, 19, 75}, 100] (* G. C. Greubel, Jun 13 2016 *)
    CoefficientList[Series[(1-2x+6x^2-x^3)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Aug 04 2018 *)

Formula

G.f.: (1-2*x+6*x^2-x^3)/(1-3*x+x^2)^2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Wesley Ivan Hurt, Jul 28 2022

A331473 Alternating sum of (n+1)*A000108(n+1).

Original entry on oeis.org

1, 3, 12, 44, 166, 626, 2377, 9063, 34695, 133265, 513381, 1982763, 7674937, 29767223, 115655452, 450067268, 1753894162, 6843602438, 26734398172, 104548010228, 409243597192, 1603372802888, 6286998311062, 24670701224714, 96877958811586, 380673221064366
Offset: 0

Views

Author

Paul Barry, Jan 17 2020

Keywords

Comments

Hankel transform is A331474.
Alternating sum of A001791(n+1).

Crossrefs

Programs

  • Maple
    a := n -> binomial(2*n+4, n+1)*hypergeom([1, n+5/2, n+3], [n+2, n+4], -4) + (-1)^n*(3*sqrt(5) - 5)/10:
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Jan 18 2020
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k+2,k)); \\ Michel Marcus, Jan 18 2020

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*(k+1)*A000108(k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2*k+2,k).
G.f.: (1 - 2*x - sqrt(1-4*x))/(2*x^2*(1+x)*sqrt(1-4*x)).
a(n) = binomial(2*n+4, n+1)*hypergeom ([1, n+5/2, n+3], [n+2, n+4], -4) + (-1)^n*(3*sqrt(5) - 5)/10. - Peter Luschny, Jan 18 2020
D-finite with recurrence +(n+2)*a(n) +(-5*n-4)*a(n-1) +2*(n-5)*a(n-2) +4*(2*n-1)*a(n-3)=0. - R. J. Mathar, Apr 27 2020
Showing 1-3 of 3 results.