A054333 1/256 of tenth unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).
1, 11, 65, 275, 935, 2717, 7007, 16445, 35750, 72930, 140998, 260338, 461890, 791350, 1314610, 2124694, 3350479, 5167525, 7811375, 11593725, 16921905, 24322155, 34467225, 48208875, 66615900, 91018356, 123058716, 164750740
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 15.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Cf. A111125, fifth column (s=4, without leading zeros). - Wolfdieter Lang, Oct 18 2012
Programs
-
GAP
List([0..30],n->(2*n+9)*Binomial(n+8,8)/9); # Muniru A Asiru, Dec 06 2018
-
Magma
[Binomial(n+8,8)+2*Binomial(n+8,9): n in [0..40]]; // Vincenzo Librandi, Feb 14 2016
-
Mathematica
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 11, 65, 275, 935, 2717, 7007, 16445, 35750, 72930}, 30] (* Vincenzo Librandi, Feb 14 2016 *)
-
PARI
vector(40, n, n--; (2*n+9)*binomial(n+8, 8)/9) \\ G. C. Greubel, Dec 02 2018
-
Sage
[(2*n+9)*binomial(n+8, 8)/9 for n in range(40)] # G. C. Greubel, Dec 02 2018
Formula
a(n) = (2*n+9)*binomial(n+8, 8)/9 = ((-1)^n)*A053120(2*n+9, 9)/2^8.
G.f.: (1+x)/(1-x)^10.
a(n) = 2*C(n+9, 9) - C(n+8, 8). - Paul Barry, Mar 04 2003
a(n) = C(n+8,8) + 2*C(n+8,9). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
E.g.f.: (1/362880)*exp(x)*(362880 + 3628800*x + 7983360*x^2 + 6773760*x^3 + 2751840*x^4 + 592704*x^5 + 70560*x^6 + 4608*x^7 + 153*x^8 + 2*x^9). - Stefano Spezia, Dec 03 2018
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=0} 1/a(n) = 294912*log(2)/35 - 7153248/1225.
Sum_{n>=0} (-1)^n/a(n) = 73728*Pi/35 - 8105688/1225. (End)
Comments