cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054477 A Pellian-related sequence.

Original entry on oeis.org

1, 13, 64, 307, 1471, 7048, 33769, 161797, 775216, 3714283, 17796199, 85266712, 408537361, 1957420093, 9378563104, 44935395427, 215298414031, 1031556674728, 4942484959609, 23680868123317, 113461855656976, 543628410161563, 2604680195150839, 12479772565592632
Offset: 0

Views

Author

Barry E. Williams, Apr 16 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 256.

Crossrefs

Cf. A002320.

Programs

  • Haskell
    a054477 n = a054477_list !! n
    a054477_list = 1 : 13 :
       (zipWith (-) (map (* 5) (tail a054477_list)) a054477_list)
    -- Reinhard Zumkeller, Oct 16 2011
  • Maple
    a:= n-> (Matrix([[1,-8]]). Matrix([[5,1],[ -1,0]])^(n))[1,1]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 07 2008
  • Mathematica
    LinearRecurrence[{5, -1}, {1, 13}, 20] (* Jean-François Alcover, Jan 09 2016 *)

Formula

a(n) = 5a(n-1)-a(n-2); a(0)=1, a(1)=13.
(A054477)=sqrt{21*(A002320)^2-20}; where the algebraic operations on (A------) are performed from the inside - out; that is, first squared, then multiplied by 21, then 20 is subtracted and finally the square root is performed term by term.
G.f.: (1+8*x)/(1-5*x+x^2). - Alois P. Heinz, Aug 07 2008
a(n) = (2^(-1-n)*((5-sqrt(21))^n*(-21+sqrt(21))+(5+sqrt(21))^n*(21+sqrt(21))))/sqrt(21). - Colin Barker, May 26 2016
E.g.f.: (sqrt(21)*sinh(sqrt(21)*x/2) + cosh(sqrt(21)*x/2))*exp(5*x/2). - Ilya Gutkovskiy, May 26 2016