cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002320 a(n) = 5*a(n-1) - a(n-2).

Original entry on oeis.org

1, 3, 14, 67, 321, 1538, 7369, 35307, 169166, 810523, 3883449, 18606722, 89150161, 427144083, 2046570254, 9805707187, 46981965681, 225104121218, 1078538640409, 5167589080827, 24759406763726, 118629444737803
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Together with A002310 these are the two sequences satisfying the requirement that (a(n)^2 + a(n-1)^2)/(1 - a(n)*a(n-1)) be an integer; in both cases this integer is -5. - Floor van Lamoen, Oct 26 2001

References

  • From a posting to Netnews group sci.math by ksbrown(AT)seanet.com (K. S. Brown) on Aug 15 1996.

Crossrefs

Cf. A054477.

Programs

  • Haskell
    a002320 n = a002320_list !! n
    a002320_list = 1 : 3 :
       (zipWith (-) (map (* 5) (tail a002320_list)) a002320_list)
    -- Reinhard Zumkeller, Oct 16 2011
  • Mathematica
    LinearRecurrence[{5,-1},{1,3},30] (* Harvey P. Dale, Nov 13 2014 *)

Formula

Sequences A002310, A002320 and A049685 have this in common: each one satisfies a(n+1) = (a(n)^2+5)/a(n-1) - Graeme McRae, Jan 30 2005
G.f.: (1-2x)/(1-5x+x^2). - Philippe Deléham, Nov 16 2008
a(n) = Sum_{k = 0..n} A238731(n,k)*2^k. - _Philippe Deléham, Mar 05 2014
E.g.f.: exp(5*x/2)*(sqrt(21)*cosh(sqrt(21)*x/2) + sinh(sqrt(21)*x/2))/sqrt(21). - Stefano Spezia, Jul 07 2025
From Peter Bala, Jul 07 2025: (Start)
a(n) = ( (4 + sqrt(21))*(5 - sqrt(21))^(n+1) - (4 - sqrt(21))*(5 + sqrt(21))^(n+1) )/(2^(n+1)*sqrt(21)).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n) + 5/a(2*n)) = 1/15, since 5/(a(2*n) + 5/a(2*n)) = 1/a(2*n-1) + 1/a(2*n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n-1) + 5/a(2*n-1)) = 1/5, since 5/(a(2*n-1) + 5/a(2*n-1)) = 1/a(2*n-2) + 1/a(2*n). (End)

A002310 a(n) = 5*a(n-1) - a(n-2), with a(0) = 1 and a(1) = 2.

Original entry on oeis.org

1, 2, 9, 43, 206, 987, 4729, 22658, 108561, 520147, 2492174, 11940723, 57211441, 274116482, 1313370969, 6292738363, 30150320846, 144458865867, 692144008489, 3316261176578, 15889161874401, 76129548195427, 364758579102734, 1747663347318243, 8373558157488481, 40120127440124162
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Together with A002320 these are the two sequences satisfying ( a(n)^2+a(n-1)^2 )/(1 - a(n)a(n-1)) is an integer, in both cases this integer is -5. - Floor van Lamoen, Oct 26 2001
Limit_{n->oo} a(n+1)/a(n) = (5 + sqrt(21))/2 = A107905. - Wolfdieter Lang, Nov 17 2023

References

  • From a posting to Netnews group sci.math by ksbrown(AT)seanet.com (K. S. Brown) on Aug 15 1996.

Crossrefs

Programs

  • Haskell
    a002310 n = a002310_list !! n
    a002310_list = 1 : 2 :
       (zipWith (-) (map (* 5) (tail a002310_list)) a002310_list)
    -- Reinhard Zumkeller, Oct 16 2011
  • Mathematica
    LinearRecurrence[{5, -1}, {1, 2}, 25] (* T. D. Noe, Feb 22 2014 *)

Formula

Sequences A002310, A002320 and A049685 have this in common: each one satisfies a(n+1) = (a(n)^2+5)/a(n-1). - Graeme McRae, Jan 30 2005
G.f.: (1-3x)/(1-5x+x^2). - Philippe Deléham, Nov 16 2008
a(n) = S(n, 5) - 3*S(n-1, 5), for n >= 0, with the S-Chebyshev polynomial (see A049310) S(n, 5) = A004254(n+1). - Wolfdieter Lang, Nov 17 2023
E.g.f.: exp(5*x/2)*(21*cosh(sqrt(21)*x/2) - sqrt(21)*sinh(sqrt(21)*x/2))/21. - Stefano Spezia, Jul 07 2025

A003769 Number of perfect matchings (or domino tilings) in K_4 X P_n.

Original entry on oeis.org

3, 16, 75, 361, 1728, 8281, 39675, 190096, 910803, 4363921, 20908800, 100180081, 479991603, 2299777936, 11018898075, 52794712441, 252954664128, 1211978608201, 5806938376875, 27822713276176, 133306628004003, 638710426743841, 3060245505715200
Offset: 1

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Essentially the same as A005386. First differences of A099025.

Programs

  • PARI
    Vec(x*(3 + 4*x - x^2) / ((1 + x)*(1 - 5*x + x^2)) + O(x^40)) \\ Colin Barker, Dec 16 2017

Formula

a(n) = 4a(n-1) + 4a(n-2) - a(n-3), n>3.
a(n) = (1/7)*(6*A030221(n) - A054477(n) + 2(-1)^n).
G.f.: x*(3+4*x-x^2)/((1+x)*(1-5*x+x^2)). - R. J. Mathar, Dec 16 2008
a(n) = 2^(-1-n)*((-1)^n*2^(2+n) + (5-sqrt(21))^(1+n) + (5+sqrt(21))^(1+n)) / 7. - Colin Barker, Dec 16 2017
Showing 1-3 of 3 results.