cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A049685 a(n) = L(4*n+2)/3, where L=A000032 (the Lucas sequence).

Original entry on oeis.org

1, 6, 41, 281, 1926, 13201, 90481, 620166, 4250681, 29134601, 199691526, 1368706081, 9381251041, 64300051206, 440719107401, 3020733700601, 20704416796806, 141910183877041, 972666870342481, 6666757908520326, 45694638489299801, 313195711516578281
Offset: 0

Views

Author

Keywords

Comments

In general, Sum_{k=0..n} binomial(2*n-k,k)j^(n-k) = (-1)^n*U(2n, I*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,7), where L is defined as in A108299; see also A033890 for L(n,-7). - Reinhard Zumkeller, Jun 01 2005
Take 7 numbers consisting of 5 ones together with any two successive terms from this sequence. This set has the property that the sum of their squares is 7 times their product. (R. K. Guy, Oct 12 2005.) See also A111216.
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6} which do not end in 0. - Tanya Khovanova, Jan 10 2007
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
From Wolfdieter Lang, Feb 09 2021: (Start)
All positive solutions of the Diophantine equation x^2 + y^2 - 7*x*y = -5 are given by [x(n) = S(n, 7) - S(n-1, 7), y(n) = x(n-1)], for all integer numbers n, with the Chebyshev S-polynomials (A049310), with S(-1, 0) = 0, and S(-n, x) = -S(n-2, x), for n >= 2. x(n) = a(n), for n >= 0.
This indefinite binary quadratic form has discriminant D = +45. There is only this family representing -5 properly with x and y positive, and there are no improper solutions.
All proper and improper solutions of the generalized Pell equation X^2 - 45*Y^2 = +4 are given, up to a combined sign change in X and Y, in terms of x(n) = a(n) from the preceding comment, by X(n) = x(n) + x(n-1) = S(n-1, 7) - S(n-2, 7) and Y(n) = (x(n) - x(n-1))/3 = S(n-1, 7), for all integer numbers n. For positive integers X(n) = A056854(n) and Y(n) = A004187(n). X(-n) = X(n) and Y(-n) = - Y(n), for n >= 1.
The two conjugated proper family of solutions are given by [X(3*n+1), Y(3*n+1)] and [X(3*n+2), Y(3*n+2)], and the one improper family by [X(3*n), Y(3*n)], for all integer numbers n.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

Examples

			a(3) = L(4*3 + 2)/3 = 843/3 = 281. - _Indranil Ghosh_, Feb 06 2017
		

Crossrefs

Row 7 of array A094954. First differences of A004187.
Cf. similar sequences listed in A238379.

Programs

  • Magma
    [Lucas(4*n+2)/3: n in [0..30]]; // G. C. Greubel, Dec 17 2017
  • Mathematica
    Table[LucasL[4*n+2]/3, {n,0,50}] (* or *) LinearRecurrence[{7,-1}, {1,6}, 50] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    a(n)=(fibonacci(4*n+1)+fibonacci(4*n+3))/3 \\ Charles R Greathouse IV, Jun 16 2014
    
  • Sage
    [lucas_number1(n,7,1)-lucas_number1(n-1,7,1) for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i); then q(n, 5)=a(n); a(n) = 7a(n-1) - a(n-2). - Benoit Cloitre, Nov 10 2002
From Ralf Stephan, May 29 2004: (Start)
a(n+2) = 7a(n+1) - a(n).
G.f.: (1-x)/(1-7x+x^2).
a(n)*a(n+3) = 35 + a(n+1)*a(n+2). (End)
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*5^k. - Paul Barry, Aug 30 2004
If another "1" is inserted at the beginning of the sequence, then A002310, A002320 and A049685 begin with 1, 2; 1, 3; and 1, 1; respectively and satisfy a(n+1) = (a(n)^2+5)/a(n-1). - Graeme McRae, Jan 30 2005
a(n) = (-1)^n*U(2n, i*sqrt(5)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005
[a(n), A004187(n+1)] = [1,5; 1,6]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = S(n, 7) - S(n-1, 7) with Chebyshev S polynomials S(n-1, 7) = A004187(n), for n >= 0. - Wolfdieter Lang, Feb 09 2021
E.g.f.: exp(7*x/2)*(3*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2))/3. - Stefano Spezia, Apr 14 2025
From Peter Bala, May 04 2025: (Start)
a(n) = sqrt(2/9) * sqrt(1 - T(2*n+1, -7/2)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(n) divides a(3*n+1); a(n) divides a(5*n+2); in general, for k >= 0, a(n) divides a((2*k+1)*n + k).
The aerated sequence [b(n)]n>=1 = [1, 0, 6, 0, 41, 0, 281, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -9, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1/5 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A290903(n-1) - 1/A290903(n).) (End)

A238731 Riordan array ((1-2*x)/(1-3*x+x^2), x/(1-3*x+x^2)).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 5, 13, 7, 1, 13, 40, 33, 10, 1, 34, 120, 132, 62, 13, 1, 89, 354, 483, 308, 100, 16, 1, 233, 1031, 1671, 1345, 595, 147, 19, 1, 610, 2972, 5561, 5398, 3030, 1020, 203, 22, 1, 1597, 8495, 17984, 20410, 13893, 5943, 1610, 268, 25, 1, 4181
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2014

Keywords

Comments

Unsigned version of A124037 and A126126.
Subtriangle of the triangle given by (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are A001075(n).
Diagonal sums are A133494(n).
Sum_{k=0..n} T(n,k)*x^k = A001519(n), A001075(n), A002320(n), A038723(n), A033889(n) for x = 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Mar 05 2014

Examples

			Triangle begins:
1;
1, 1;
2, 4, 1;
5, 13, 7, 1;
13, 40, 33, 10, 1;
34, 120, 132, 62, 13, 1;
89, 354, 483, 308, 100, 16, 1;
233, 1031, 1671, 1345, 595, 147, 19, 1;...
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 5, 13, 7, 1;
0, 13, 40, 33, 10, 1;
0, 34, 120, 132, 62, 13, 1;
0, 89, 354, 483, 308, 100, 16, 1;
0, 233, 1031, 1671, 1345, 595, 147, 19, 1;...
		

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1-2#)/(1-3#+#^2)&, x/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-2*x)/(1-(y+3)*x+x^2). - Philippe Deléham, Mar 05 2014

A002310 a(n) = 5*a(n-1) - a(n-2), with a(0) = 1 and a(1) = 2.

Original entry on oeis.org

1, 2, 9, 43, 206, 987, 4729, 22658, 108561, 520147, 2492174, 11940723, 57211441, 274116482, 1313370969, 6292738363, 30150320846, 144458865867, 692144008489, 3316261176578, 15889161874401, 76129548195427, 364758579102734, 1747663347318243, 8373558157488481, 40120127440124162
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Together with A002320 these are the two sequences satisfying ( a(n)^2+a(n-1)^2 )/(1 - a(n)a(n-1)) is an integer, in both cases this integer is -5. - Floor van Lamoen, Oct 26 2001
Limit_{n->oo} a(n+1)/a(n) = (5 + sqrt(21))/2 = A107905. - Wolfdieter Lang, Nov 17 2023

References

  • From a posting to Netnews group sci.math by ksbrown(AT)seanet.com (K. S. Brown) on Aug 15 1996.

Crossrefs

Programs

  • Haskell
    a002310 n = a002310_list !! n
    a002310_list = 1 : 2 :
       (zipWith (-) (map (* 5) (tail a002310_list)) a002310_list)
    -- Reinhard Zumkeller, Oct 16 2011
  • Mathematica
    LinearRecurrence[{5, -1}, {1, 2}, 25] (* T. D. Noe, Feb 22 2014 *)

Formula

Sequences A002310, A002320 and A049685 have this in common: each one satisfies a(n+1) = (a(n)^2+5)/a(n-1). - Graeme McRae, Jan 30 2005
G.f.: (1-3x)/(1-5x+x^2). - Philippe Deléham, Nov 16 2008
a(n) = S(n, 5) - 3*S(n-1, 5), for n >= 0, with the S-Chebyshev polynomial (see A049310) S(n, 5) = A004254(n+1). - Wolfdieter Lang, Nov 17 2023
E.g.f.: exp(5*x/2)*(21*cosh(sqrt(21)*x/2) - sqrt(21)*sinh(sqrt(21)*x/2))/21. - Stefano Spezia, Jul 07 2025

A110307 Expansion of (1+2*x)/((1+x+x^2)*(1+5*x+x^2)).

Original entry on oeis.org

1, -4, 17, -80, 384, -1842, 8827, -42292, 202631, -970862, 4651680, -22287540, 106786021, -511642564, 2451426797, -11745491420, 56276030304, -269634660102, 1291897270207, -6189851690932, 29657361184451, -142096954231322, 680827409972160, -3262040095629480
Offset: 0

Views

Author

Creighton Dement, Jul 19 2005

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+2*x)/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 03 2023
    
  • Maple
    seriestolist(series((1+2*x)/((x^2+x+1)*(x^2+5*x+1)), x=0,25));
  • Mathematica
    LinearRecurrence[{-6,-7,-6,-1}, {1,-4,17,-80}, 41] (* G. C. Greubel, Jan 03 2023 *)
  • PARI
    Vec((1+2*x)/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, Apr 30 2019
    
  • SageMath
    def U(n,x): return chebyshev_U(n, x)
    def A110307(n): return (1/4)*(3*U(n,-5/2) +U(n-1,-5/2) +U(n,-1/2) -U(n-1,-1/2))
    [A110307(n) for n in range(41)] # G. C. Greubel, Jan 03 2023

Formula

a(n+2) = - 5*a(n+1) - a(n) - A099837(n+1).
a(n) + a(n+1) + a(n+2) = A002320(n).
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, Apr 30 2019
a(n) = (1/4)*(3*U(n,-5/2) + U(n-1,-5/2) + U(n,-1/2) - U(n-1,-1/2)), where U(n, x) = ChebyshevU(n, x). - G. C. Greubel, Jan 03 2023

A054477 A Pellian-related sequence.

Original entry on oeis.org

1, 13, 64, 307, 1471, 7048, 33769, 161797, 775216, 3714283, 17796199, 85266712, 408537361, 1957420093, 9378563104, 44935395427, 215298414031, 1031556674728, 4942484959609, 23680868123317, 113461855656976, 543628410161563, 2604680195150839, 12479772565592632
Offset: 0

Views

Author

Barry E. Williams, Apr 16 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 256.

Crossrefs

Cf. A002320.

Programs

  • Haskell
    a054477 n = a054477_list !! n
    a054477_list = 1 : 13 :
       (zipWith (-) (map (* 5) (tail a054477_list)) a054477_list)
    -- Reinhard Zumkeller, Oct 16 2011
  • Maple
    a:= n-> (Matrix([[1,-8]]). Matrix([[5,1],[ -1,0]])^(n))[1,1]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 07 2008
  • Mathematica
    LinearRecurrence[{5, -1}, {1, 13}, 20] (* Jean-François Alcover, Jan 09 2016 *)

Formula

a(n) = 5a(n-1)-a(n-2); a(0)=1, a(1)=13.
(A054477)=sqrt{21*(A002320)^2-20}; where the algebraic operations on (A------) are performed from the inside - out; that is, first squared, then multiplied by 21, then 20 is subtracted and finally the square root is performed term by term.
G.f.: (1+8*x)/(1-5*x+x^2). - Alois P. Heinz, Aug 07 2008
a(n) = (2^(-1-n)*((5-sqrt(21))^n*(-21+sqrt(21))+(5+sqrt(21))^n*(21+sqrt(21))))/sqrt(21). - Colin Barker, May 26 2016
E.g.f.: (sqrt(21)*sinh(sqrt(21)*x/2) + cosh(sqrt(21)*x/2))*exp(5*x/2). - Ilya Gutkovskiy, May 26 2016
Showing 1-5 of 5 results.