A355980 Indices of primes in A049685.
2, 3, 6, 9, 15, 21, 44, 50, 114
Offset: 1
Links
- J. B. Cosgrave and K. Dilcher, Pairs of reciprocal quadratic congruences involving primes, Fib. Quart. 51 (2) (2013) 98, after Theorem 4.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(2) = 7*a(1) - a(0) = 7*7 - 1 = 48. - _Michael B. Porter_, Jul 04 2016
[Fibonacci(4*n)/3 : n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
/* By definition: */ [n le 2 select n-1 else 7*Self(n-1)-Self(n-2): n in [1..23]]; // Bruno Berselli, Dec 24 2012
seq(combinat:-fibonacci(4*n)/3, n = 0 .. 30); # Robert Israel, Jan 26 2015
LinearRecurrence[{7,-1},{0,1},30] (* Harvey P. Dale, Jul 13 2011 *) CoefficientList[Series[x/(1 - 7*x + x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 23 2012 *)
a[0]:0$ a[1]:1$ a[n]:=7*a[n-1] - a[n-2]$ A004187(n):=a[n]$ makelist(A004187(n),n,0,30); /* Martin Ettl, Nov 11 2012 */
numlib::fibonacci(4*n)/3 $ n = 0..25; // Zerinvary Lajos, May 09 2008
a(n)=fibonacci(4*n)/3 \\ Charles R Greathouse IV, Mar 09 2012
concat(0, Vec(x/(1-7*x+x^2) + O(x^99))) \\ Altug Alkan, Jul 03 2016
[lucas_number1(n,7,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
[fibonacci(4*n)/3 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009
Triangle begins: 1; 1, -1; 1, -1, -1; 1, -1, -2, 1; 1, -1, -3, 2, 1; 1, -1, -4, 3, 3, -1; 1, -1, -5, 4, 6, -3, -1; 1, -1, -6, 5, 10, -6, -4, 1; 1, -1, -7, 6, 15, -10, -10, 4, 1; 1, -1, -8, 7, 21, -15, -20, 10, 5, -1; 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1; 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1; ...
a108299 n k = a108299_tabl !! n !! k a108299_row n = a108299_tabl !! n a108299_tabl = [1] : iterate (\row -> zipWith (+) (zipWith (*) ([0] ++ row) a033999_list) (zipWith (*) (row ++ [0]) a059841_list)) [1,-1] -- Reinhard Zumkeller, May 06 2012
A108299 := proc(n,k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *)
{T(n,k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)),n,x)+y*O(y^k),k,y)} (Hanna)
[Fibonacci(4*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
A033890 := proc(n) option remember; if n <= 1 then op(n+1,[1,8]); else 7*procname(n-1)-procname(n-2) ; end if; end proc: # R. J. Mathar, Apr 30 2017
Table[Fibonacci[4n + 2], {n, 0, 14}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *) LinearRecurrence[{7, -1}, {1, 8}, 50] (* G. C. Greubel, Jul 13 2017 *) a[n_] := (GoldenRatio^(2 (1 + 2 n)) - GoldenRatio^(-2 (1 + 2 n)))/Sqrt[5] Table[a[n] // FullSimplify, {n, 0, 21}] (* Gerry Martens, Aug 20 2025 *)
a(n)=fibonacci(4*n+2);
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 31 2016
f[n_] := Simplify[((1 + Sqrt[5])^n + (1 - Sqrt[5])^n)/2]; Array[f, 28, 0] (* Or *) LinearRecurrence[{2, 4}, {1, 1}, 28] (* Robert G. Wilson v, Sep 18 2013 *) RecurrenceTable[{a[1] == 1, a[2] == 1, a[n] == 2 a[n-1] + 4 a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Jul 31 2016 *) Table[2^(n-1) LucasL[n], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 19 2016 *)
lucas(n)=fibonacci(n-1)+fibonacci(n+1) a(n)=lucas(n)/2*2^n \\ Charles R Greathouse IV, Sep 18 2013
from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,1,2,4, lambda n: 0); [next(it) for i in range(1,26)] # Zerinvary Lajos, Jul 09 2008
[lucas_number2(n,2,-4)/2 for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 1,2,5,13,34,89,233,610,1597, ... 1,3,11,41,153,571,2131,7953, ... 1,4,19,91,436,2089,10009,47956, ... 1,5,29,169,985,5741,33461,195025, ... 1,6,41,281,1926,13201,90481,620166, ...
max = 14; row[k_] := Rest[ CoefficientList[ Series[ x*(1-x)/(1-k*x+x^2), {x, 0, max}], x]]; t = Table[ row[k], {k, 2, max+1}]; Flatten[ Table[ t[[k-n+1, n]], {k, 1, max}, {n, 1, k}]] (* Jean-François Alcover, Dec 27 2011 *)
T(k,n)=polcoeff(x*(1-x)/(1-k*x+x*x),n)
[n le 2 select 35^(n-1) else 36*Self(n-1)-Self(n-2): n in [1..20]];
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1 - x)/(1 - 36*x + x^2))); // Marius A. Burtea, Jan 14 2020
CoefficientList[Series[(1 - x)/(1 - 36 x + x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[{36, -1}, {1, 35}, 20]
a(n)=([0,1; -1,36]^n*[1;35])[1,1] \\ Charles R Greathouse IV, May 10 2016
m = 20; L.= PowerSeriesRing(ZZ, m); f = (1-x)/(1-36*x+x^2) print(f.coefficients())
Pell, n=1: (2*19)^2 - 5*17^2 = -1.
[(Fibonacci(6*n+5) - Fibonacci(6*n+1))/4: n in [0..30]]; // G. C. Greubel, Dec 15 2017
with(numtheory): with(combinat): seq((fibonacci(6*n+5)-fibonacci(6*n+1))/4,n=0..20); # Muniru A Asiru, Mar 25 2018
a[n_] := Simplify[(2 + Sqrt@5)^(2 n - 1) + (2 - Sqrt@5)^(2 n - 1)]/4; Array[a, 16] (* Robert G. Wilson v, Oct 28 2010 *)
my(x='x+O('x^30)); Vec((1+x)/(1 - 18*x + x^2)) \\ G. C. Greubel, Dec 15 2017
a(0) = ceiling(r) = 7, where r = ((1+sqrt(5))/2)^4 = 6.8...; a(1) = floor(7*r) = 47; a(2) = ceiling(47) = 323.
(* Program 1. A214992 and related sequences *) x = GoldenRatio^4; z = 30; (* z = # terms in sequences *) z1 = 100; (* z1 = # digits in approximations *) f[x_] := Floor[x]; c[x_] := Ceiling[x]; p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x]; p1[n_] := f[x*p1[n - 1]] p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]] p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]] p4[n_] := c[x*p4[n - 1]] Table[p1[n], {n, 0, z}] (* A049685 *) Table[p2[n], {n, 0, z}] (* A157335 *) Table[p3[n], {n, 0, z}] (* A214992 *) Table[p4[n], {n, 0, z}] (* A004187 *) Table[p4[n] - p1[n], {n, 0, z}] (* A004187 *) Table[p3[n] - p2[n], {n, 0, z}] (* A098305 *) (* Program 2. Plot of power floor and power ceiling functions, p1(x) and p4(x) *) f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x]; p1[x_, 0] := f[x]; p1[x_, n_] := f[x*p1[x, n - 1]]; p4[x_, 0] := c[x]; p4[x_, n_] := c[x*p4[x, n - 1]]; Plot[Evaluate[{p1[x, 10]/x^10, p4[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}] (* Program 3. Plot of power floor-ceiling and power ceiling-floor functions, p2(x) and p3(x) *) f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x]; p2[x_, 0] := f[x]; p3[x_, 0] := c[x]; p2[x_, n_] := If[Mod[n, 2] == 1, c[x*p2[x, n - 1]], f[x*p2[x, n - 1]]] p3[x_, n_] := If[Mod[n, 2] == 1, f[x*p3[x, n - 1]], c[x*p3[x, n - 1]]] Plot[Evaluate[{p2[x, 10]/x^10, p3[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]
List([0..30], n-> Fibonacci(4*n+3)); # G. C. Greubel, Jul 14 2019
[Fibonacci(4*n+3): n in [0..30]]; // Vincenzo Librandi, Apr 17 2011
Table[Fibonacci[4*n+3],{n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *) LinearRecurrence[{7,-1},{2,13},31] (* or *) CoefficientList[Series[ (2-x)/(1-7x+x^2),{x,0,30}],x] (* Harvey P. Dale, May 03 2011 *)
a(n)=fibonacci(4*n+3) \\ Charles R Greathouse IV, Sep 24 2015
[fibonacci(4*n+3) for n in (0..30)] # G. C. Greubel, Jul 14 2019
Comments