cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005386 Area of n-th triple of squares around a triangle.

Original entry on oeis.org

1, 3, 16, 75, 361, 1728, 8281, 39675, 190096, 910803, 4363921, 20908800, 100180081, 479991603, 2299777936, 11018898075, 52794712441, 252954664128, 1211978608201, 5806938376875, 27822713276176, 133306628004003, 638710426743841, 3060245505715200
Offset: 1

Views

Author

Jean Meeus

Keywords

Comments

a(n)*(-1)^(n+1) is the r=-3 member of the r-family of sequences S_r(n), n>=1, defined in A092184 where more information can be found.
The sequence is the case P1 = 3, P2 = -10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A003769.
First differences of A099025.
Cf. A100047.

Programs

  • Magma
    I:=[1, 3, 16]; [n le 3 select I[n] else 4*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..41]]; // G. C. Greubel, Nov 16 2022
    
  • Maple
    A005386:=-(-1+z)/(z+1)/(z**2-5*z+1); [Conjectured by Simon Plouffe in his 1992 dissertation.]
    a:= n-> (Matrix([[0,1,3]]). Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,4,-1][i] else 0 fi)^(n))[1,1]: seq(a(n), n=1..25); # Alois P. Heinz, Aug 05 2008
  • Mathematica
    a[n_]:= Module[{n1=1, n2=0}, Do[{n1, n2}={Sqrt[3]*n1+n2, n1}, {n-1}];n1^2];
    Table[a[n], {n,30}]
    a[n_]:= Round[((5+Sqrt[21])/2)^n/7]; Table[a[n], {n, 30}]
    Rest@(CoefficientList[Series[x/(1-x*(Sqrt[3]+x)), {x, 0, 30}], x])^2
    Abs[ChebyshevU[Range[1,40]-1, I*Sqrt[3]/2]]^2 (* G. C. Greubel, Nov 16 2022 *)
  • SageMath
    def A005386(n): return abs(chebyshev_U(n-1, i*sqrt(3)/2))^2
    [A005386(n) for n in range(1,40)] # G. C. Greubel, Nov 16 2022

Formula

G.f.: x*(1-x)/((1+x)*(1-5*x+x^2)).
a(n) = 4*a(n-1) + 4*a(n-2) - a(n-3), a(1)=1, a(2)=3, a(3)=16.
a(n) = (2/7)*(T(n, 5/2) - (-1)^n) with twice Chebyshev's polynomials of the first kind evaluated at x=5/2: 2*T(n, 5/2) = A003501(n) = ((5+sqrt(21))^n + (5-sqrt(21))^n)/2^n. - Wolfdieter Lang, Oct 18 2004
a(2*n) = A003690(n). a(2*n+1) = A004253(n)^2. - Alexander Evnin, Mar 11 2012
From Peter Bala, Apr 03 2014: (Start)
a(n) = |U(n-1, sqrt(3)*i/2)|^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

Extensions

Edited by Peter J. C. Moses, Apr 23 2004
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004

A099025 Expansion of 1 / ((1+x) * (1-5*x+x^2)).

Original entry on oeis.org

1, 4, 20, 95, 456, 2184, 10465, 50140, 240236, 1151039, 5514960, 26423760, 126603841, 606595444, 2906373380, 13925271455, 66719983896, 319674648024, 1531653256225, 7338591633100, 35161304909276, 168467932913279, 807178359657120, 3867423865372320
Offset: 0

Views

Author

Ralf Stephan, Sep 26 2004

Keywords

Examples

			1 + 4*x + 20*x^2 + 95*x^3 + 456*x^4 + 2184*x^5 + 10465*x^6 + ...
		

Crossrefs

First differences of A089927. First differences are in A003769 and A005386. Pairwise sums are in A004254.

Programs

  • Magma
    I:=[1, 4, 20]; [n le 3 select I[n] else 4*Self(n-1) + 4*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 31 2017
  • Mathematica
    CoefficientList[Series[1/((1+x)*(1-5*x+x^2)), {x,0,50}], x] (* or *) LinearRecurrence[{4,4,-1}, {1,4,20}, 30] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    Vec(1/(1+x)/(1-5*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = (3 * (-1)^n + 38 * subst( poltchebi(n), x, 5/2) - 8 * subst( poltchebi(n-1), x, 5/2)) / 21} /* Michael Somos, Jan 25 2013 */
    

Formula

a(n) = (1/7)*[A030221(n+2) - A003501(n+2) + (-1)^n].
a(n) = 5*a(n-1) -a(n-2) +(-1)^n, a(0)=1, a(1)=4. - Vincenzo Librandi, Mar 22 2011
G.f.: 1 / ((1 + x) * (1 - 5*x + x^2)).
a(-3-n) = -a(n). - Michael Somos, Jan 25 2013
a(n) = (2^(-n)*(3*(-2)^n+(9-2*sqrt(21))*(5-sqrt(21))^n+(5+sqrt(21))^n*(9+2*sqrt(21))))/21. - Colin Barker, Nov 02 2016

A089927 Expansion of 1/((1-x^2)(1-5x+x^2)).

Original entry on oeis.org

1, 5, 25, 120, 576, 2760, 13225, 63365, 303601, 1454640, 6969600, 33393360, 159997201, 766592645, 3672966025, 17598237480, 84318221376, 403992869400, 1935646125625, 9274237758725, 44435542668001, 212903475581280
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-5x+x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{5,0,-5,1},{1,5,25,120},30] (* Harvey P. Dale, Apr 12 2015 *)

Formula

a(n) = 5*a(n-1) - 5*a(n-3) + a(n-4).
a(n) = ((5-sqrt(21))^n*(23 - 5*sqrt(21)) + (5 + sqrt(21))^n*(23 + 5*sqrt(21)))/42/2^n + (-1)^n/14 - 1/6. [corrected by Jason Yuen, Aug 25 2024]
a(n) = Sum_{k=0..floor(n/2)} U(n-2k, 5/2) where U is the Chebyshev polynomial of the second kind.
a(n) = (-1)^n/14 - 1/6 + (23*A004254(n+1) - 5*A004254(n))/21. - R. J. Mathar, Mar 22 2011
Showing 1-3 of 3 results.