cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054735 Sums of twin prime pairs.

Original entry on oeis.org

8, 12, 24, 36, 60, 84, 120, 144, 204, 216, 276, 300, 360, 384, 396, 456, 480, 540, 564, 624, 696, 840, 864, 924, 1044, 1140, 1200, 1236, 1284, 1320, 1620, 1644, 1656, 1716, 1764, 2040, 2064, 2100, 2124, 2184, 2304, 2460, 2556, 2580, 2604, 2640, 2856, 2904
Offset: 1

Views

Author

Enoch Haga, Apr 22 2000

Keywords

Comments

(p^q)+(q^p) calculated modulo pq, where (p,q) is the n-th twin prime pair. Example: (599^601)+(601^599) == 1200 mod (599*601). - Sam Alexander, Nov 14 2003
El'hakk makes the following claim (without any proof): (q^p)+(p^q) = 2*cosh(q arctanh( sqrt( 1-((2/p)^2) ) )) + 2cosh(p arctanh( sqrt( 1-((2/q)^2) ) )) mod p*q. - Sam Alexander, Nov 14 2003
Also: Numbers N such that N/2-1 and N/2+1 both are prime. - M. F. Hasler, Jan 03 2013
Excluding the first term, all remaining terms have digital root 3, 6 or 9. - J. W. Helkenberg, Jul 24 2013
Except for the first term, this sequence is a subsequence of A005101 (Abundant numbers) and of A008594 (Multiples of 12). - Ivan N. Ianakiev, Jul 04 2021

Examples

			a(3) = 24 because the twin primes 11 and 13 add to 24.
		

Crossrefs

Programs

  • Haskell
    a054735 = (+ 2) . (* 2) . a001359  -- Reinhard Zumkeller, Feb 10 2015
  • Maple
    ZL:=[]:for p from 1 to 1451 do if (isprime(p) and isprime(p+2)) then ZL:=[op(ZL),p+(p+2)]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
    A054735 := proc(n)
    2*A001359(n)+2;
    end proc: # R. J. Mathar, Jan 06 2013
  • Mathematica
    Select[Table[Prime[n] + 1, {n, 230}], PrimeQ[ # + 1] &] *2 (* Ray Chandler, Oct 12 2005 *)
    Total/@Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==2&] (* Harvey P. Dale, Oct 23 2022 *)
  • PARI
    is_A054735(n)={!bittest(n,0)&&isprime(n\2-1)&&isprime(n\2+1)} \\ M. F. Hasler, Jan 03 2013
    
  • PARI
    pp=1;forprime(p=1,1482, if( p==pp+2, print1(p+pp,", ")); pp=p) \\ Following a suggestion by R. J. Cano, Jan 05 2013
    

Formula

a(n) = 2*A014574(n) = 4*A040040(n) = A111046(n)/2.
a(n) = 12*A002822(n-1) for all n > 1. - M. F. Hasler, Dec 12 2019

Extensions

Additional comments from Ray Chandler, Nov 16 2003
Broken link fixed by M. F. Hasler, Jan 03 2013