A054988 Number of prime divisors of 1 + (product of first n primes), with multiplicity.
1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 4, 2, 2, 4, 2, 3, 2, 4, 3, 2, 4, 4, 3, 3, 5, 3, 6, 2, 3, 2, 5, 4, 4, 2, 6, 3, 4, 3, 5, 6, 7, 2, 6, 3, 5, 3, 4, 2, 6, 5, 4, 5, 3, 5, 5, 5, 3, 3, 5, 5, 6, 3, 4, 4, 7, 5, 3, 4, 1, 2, 5, 5, 5, 4, 5, 3, 5, 4, 6, 5, 8
Offset: 1
Examples
a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
References
- Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..98
- Hisanori Mishima, Factorizations of many number sequences
- R. G. Wilson v, Explicit factorizations
Programs
-
Maple
A054988 := proc(n) numtheory[bigomega](1+mul(ithprime(i),i=1..n)) ; end proc: seq(A054988(n),n=1..20) ; # R. J. Mathar, Mar 09 2022
-
Mathematica
a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]] PrimeOmega[#+1]&/@FoldList[Times,Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
-
PARI
a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022
Formula
a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022
Extensions
More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019
Comments