cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A056160 Sum of A054988 and A054989.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 5, 5, 5, 5, 3, 7, 4, 4, 6, 7, 6, 5, 5, 6, 4, 7, 5, 5, 5, 4, 8, 8, 7, 6, 8, 6, 9, 5, 6, 6, 9, 8, 9, 5, 11, 7, 9, 7, 9, 10, 11, 4, 9, 6, 7, 7, 7, 6, 8, 9, 8, 12, 7, 8, 8, 9, 7, 6, 8, 6, 9, 4, 8, 7, 12, 10, 7, 8, 7, 7, 10, 8, 9, 7, 9
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), Aug 01 2000

Keywords

Comments

Prime divisors are counted with multiplicity.
If "2" were a cluster point of this sequence it would follow that there are infinitely many twin primes.

Crossrefs

Programs

  • PARI
    a(n) = my(P=prod(k=1, n, prime(k))); bigomega(P+1) + bigomega(P-1); \\ Michel Marcus, Mar 07 2022

Extensions

a(36)-a(81) from Charles R Greathouse IV, May 07 2011

A046051 Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8
Offset: 1

Views

Author

Keywords

Comments

Length of row n of A001265.

Examples

			a(4) = 2 because 2^4 - 1 = 15 = 3*5.
From _Gus Wiseman_, Jul 04 2019: (Start)
The sequence of Mersenne numbers together with their prime indices begins:
        1: {}
        3: {2}
        7: {4}
       15: {2,3}
       31: {11}
       63: {2,2,4}
      127: {31}
      255: {2,3,7}
      511: {4,21}
     1023: {2,5,11}
     2047: {9,24}
     4095: {2,2,3,4,6}
     8191: {1028}
    16383: {2,14,31}
    32767: {4,11,36}
    65535: {2,3,7,55}
   131071: {12251}
   262143: {2,2,2,4,8,21}
   524287: {43390}
  1048575: {2,3,3,5,11,13}
(End)
		

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), this sequence (b=2).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]]
    a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n,200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013

Formula

Mobius transform of A085021. - T. D. Noe, Jun 19 2003
a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019

A054992 Number of prime factors of 2^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 4, 3, 2, 2, 2, 3, 4, 1, 2, 4, 2, 2, 4, 3, 2, 3, 4, 4, 6, 2, 3, 6, 2, 2, 5, 4, 5, 4, 3, 4, 4, 2, 3, 6, 2, 3, 7, 5, 3, 3, 3, 7, 6, 3, 3, 6, 6, 3, 5, 3, 4, 4, 2, 5, 7, 2, 6, 6, 3, 4, 5, 7, 3, 5, 3, 5, 7, 4, 6, 10, 2, 3, 10, 5, 6, 5, 4, 5, 5, 4, 4, 11, 6, 2, 5, 4, 5, 3, 5, 6, 9, 6, 2, 9, 3
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The length of row n in A001269.

Examples

			a(3) = 2 because 2^3 + 1 = 9 = 3*3.
		

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), this sequence (b=2).
Cf. A046051 (number of prime factors of 2^n-1).
Cf. A086257 (number of primitive prime factors).

Programs

Formula

a(n) = A046051(2n) - A046051(n). - T. D. Noe, Jun 18 2003
a(n) = A001222(A000051(n)). - Amiram Eldar, Oct 04 2019

Extensions

Extended by Patrick De Geest, Oct 01 2000
Terms to a(500) in b-file from T. D. Noe, Nov 10 2007
Deleted duplicate (and broken) Wagstaff link. - N. J. A. Sloane, Jan 18 2019
a(500)-a(1062) in b-file from Amiram Eldar, Oct 04 2019
a(1063)-a(1128) in b-file from Max Alekseyev, Jul 15 2023, Mar 15 2025

A054991 Number of prime divisors of n! - 1 (counted with multiplicity).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 1, 2, 3, 2, 4, 1, 2, 1, 5, 2, 3, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 1, 3, 1, 1, 2, 3, 2, 5, 1, 4, 2, 4, 4, 7, 4, 5, 5, 2, 4, 3, 2, 5, 5, 4, 6, 6, 5, 6, 5, 2, 3, 4, 4, 5, 4, 6, 4, 7, 2, 6, 5, 5, 3, 4, 5, 7, 3, 5, 4, 2, 4, 4, 4, 4, 6, 2, 3, 4
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The series is related to the product of primes and the "proof" of the existence of infinite many prime twins.

Examples

			a(2)=0 because 2! - 1 = 1 (and this is not a prime number) a(5)=2 because 5! -1 = 119 = 7 * 17
		

Crossrefs

Programs

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
More terms from Amiram Eldar, Oct 03 2019

A054989 Number of prime divisors of -1 + (product of first n primes).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 3, 2, 2, 4, 1, 2, 3, 3, 2, 3, 3, 2, 2, 4, 3, 1, 2, 2, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 3, 5, 4, 5, 4, 4, 4, 4, 2, 3, 3, 2, 4, 3, 4, 2, 4, 4, 7, 4, 3, 3, 4, 4, 3, 3, 1, 3, 1, 4, 3, 5, 5, 4, 4, 6, 5, 5, 3, 4, 3, 4, 4, 3, 4, 2, 3, 4
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Examples

			a(4)=2 because 2*3*5*7 - 1 = 209 = 11*19
		

Crossrefs

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]-1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#] & /@ (FoldList[Times, Prime[Range[81]]] - 1) (* Harvey P. Dale, Mar 11 2017 *)

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(42)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019

A054990 Number of prime divisors of n! + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 2, 2, 3, 5, 3, 6, 2, 2, 3, 3, 4, 2, 2, 2, 1, 2, 3, 5, 4, 4, 5, 2, 5, 6, 1, 2, 4, 7, 1, 3, 4, 3, 3, 3, 4, 2, 5, 5, 6, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 3, 5, 3, 4, 5, 4, 5, 6, 5, 2, 7, 1, 4, 2, 3, 1, 6, 3, 4, 7, 3, 3, 3, 5, 5, 4, 3, 8, 3, 6, 2, 4, 3, 4, 5, 6, 6, 5, 5, 4, 5
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The smallest k! with n prime factors occurs for n in A060250.
103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153-digit composite is factored. a(104) = 4 and a(105) = 6. - Rick L. Shepherd, Jun 10 2003

Examples

			a(2)=2 because 4! + 1 = 25 = 5*5
		

Crossrefs

Cf. A000040 (prime numbers), A001359 (twin primes).
Cf. A066856 (number of distinct prime divisors of n!+1), A084846 (mu(n!+1)).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[q!+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    A054990[n_Integer] := PrimeOmega[n! + 1]; Table[A054990[n], {n,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    for(n=1,64,print1(bigomega(n!+1),","))

Extensions

More terms from Robert G. Wilson v, Mar 23 2001
More terms from Rick L. Shepherd, Jun 10 2003

A104368 Number of distinct prime factors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 4, 4, 2, 1, 4, 2, 2, 3, 2, 1, 4, 3, 3, 1, 3, 4, 5, 4, 5, 4, 3, 3, 4, 7, 2, 5, 4, 4, 2, 4, 3, 4, 2, 3, 7, 4, 2, 4, 2, 3, 2, 4, 3, 4, 5, 3, 4, 4, 2, 1, 2, 4, 6, 4, 3, 3, 4, 4, 6, 6, 6, 5, 3, 6, 4, 5, 3, 3, 5, 3, 4, 3, 4, 7, 6, 4, 3, 4, 2, 3, 3, 2, 2, 5, 2, 3, 3, 6, 4, 3, 3, 2, 3, 2, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; PrimeNu[
    Table[A104350[n] + 1, {n, 2, 50}]] (* G. C. Greubel, May 10 2017 *)

Formula

a(n) = A001221(A104365(n)).

Extensions

a(51)-a(76) from Amiram Eldar, Feb 12 2020
a(77)-a(81) from Jinyuan Wang, Apr 02 2020
Terms a(82) onward from Max Alekseyev, Oct 03 2022

A366811 The number of divisors of prime(n)#+1 where p# is the product of all the primes from 2 to p inclusive.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 4, 8, 4, 4, 8, 2, 8, 8, 4, 8, 16, 16, 4, 4, 16, 4, 8, 4, 16, 8, 4, 16, 16, 8, 8, 32, 8, 64, 4, 8, 4, 32, 16, 16, 4, 64, 8, 16, 8, 32, 64, 128, 4, 64, 8, 32, 8, 16, 4, 64, 32, 16, 32, 8, 32, 32, 32, 8, 8, 32, 32, 64, 8, 16, 16, 128, 32, 8, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 23 2023

Keywords

Examples

			a(6) = 4 because the divisors of 13#+1 = 30031 are {1, 59, 509, 30031}.
		

Crossrefs

Programs

  • Maple
    seq(numtheory[tau](mul(ithprime(k), k=1..n)+1), n=0..30);
  • Mathematica
    Map[DivisorSigma[0, #] &, 1 + FoldList[Times, 1, Prime@ Range@ 19] ] (* Michael De Vlieger, Oct 25 2023 *)

Formula

a(n) = sigma0(prime(n)#+1) = A000005(A006862(n)).

A366812 The sum of the divisors of prime(n)#+1 where p# is the product of all the primes from 2 to p inclusive.

Original entry on oeis.org

3, 4, 8, 32, 212, 2312, 30600, 544880, 9727992, 223796952, 6500793728, 200560490132, 7461870828048, 309238687200848, 13161101219883792, 615548170519961184, 33465582319854797280, 1930276657976815787040, 117814338226489513454272, 7858321551223903311137992
Offset: 0

Views

Author

Sean A. Irvine, Oct 23 2023

Keywords

Examples

			a(6) = 30600 because the divisors of 13#+1 = 30031 are {1, 59, 509, 30031}.
		

Crossrefs

Programs

  • Maple
    seq(numtheory[sigma](mul(ithprime(k), k=1..n)-1), n=0..30);
  • Mathematica
    Map[DivisorSigma[1, #] &, 1 + FoldList[Times, 1, Prime@ Range@ 19] ] (* Michael De Vlieger, Oct 25 2023 *)

Formula

a(n) = sigma(prime(n)#+1) = A000230(A006862(n)).
Showing 1-9 of 9 results.