cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A056160 Sum of A054988 and A054989.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 5, 5, 5, 5, 3, 7, 4, 4, 6, 7, 6, 5, 5, 6, 4, 7, 5, 5, 5, 4, 8, 8, 7, 6, 8, 6, 9, 5, 6, 6, 9, 8, 9, 5, 11, 7, 9, 7, 9, 10, 11, 4, 9, 6, 7, 7, 7, 6, 8, 9, 8, 12, 7, 8, 8, 9, 7, 6, 8, 6, 9, 4, 8, 7, 12, 10, 7, 8, 7, 7, 10, 8, 9, 7, 9
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), Aug 01 2000

Keywords

Comments

Prime divisors are counted with multiplicity.
If "2" were a cluster point of this sequence it would follow that there are infinitely many twin primes.

Crossrefs

Programs

  • PARI
    a(n) = my(P=prod(k=1, n, prime(k))); bigomega(P+1) + bigomega(P-1); \\ Michel Marcus, Mar 07 2022

Extensions

a(36)-a(81) from Charles R Greathouse IV, May 07 2011

A046051 Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8
Offset: 1

Views

Author

Keywords

Comments

Length of row n of A001265.

Examples

			a(4) = 2 because 2^4 - 1 = 15 = 3*5.
From _Gus Wiseman_, Jul 04 2019: (Start)
The sequence of Mersenne numbers together with their prime indices begins:
        1: {}
        3: {2}
        7: {4}
       15: {2,3}
       31: {11}
       63: {2,2,4}
      127: {31}
      255: {2,3,7}
      511: {4,21}
     1023: {2,5,11}
     2047: {9,24}
     4095: {2,2,3,4,6}
     8191: {1028}
    16383: {2,14,31}
    32767: {4,11,36}
    65535: {2,3,7,55}
   131071: {12251}
   262143: {2,2,2,4,8,21}
   524287: {43390}
  1048575: {2,3,3,5,11,13}
(End)
		

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), this sequence (b=2).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]]
    a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n,200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013

Formula

Mobius transform of A085021. - T. D. Noe, Jun 19 2003
a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019

A054992 Number of prime factors of 2^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 4, 3, 2, 2, 2, 3, 4, 1, 2, 4, 2, 2, 4, 3, 2, 3, 4, 4, 6, 2, 3, 6, 2, 2, 5, 4, 5, 4, 3, 4, 4, 2, 3, 6, 2, 3, 7, 5, 3, 3, 3, 7, 6, 3, 3, 6, 6, 3, 5, 3, 4, 4, 2, 5, 7, 2, 6, 6, 3, 4, 5, 7, 3, 5, 3, 5, 7, 4, 6, 10, 2, 3, 10, 5, 6, 5, 4, 5, 5, 4, 4, 11, 6, 2, 5, 4, 5, 3, 5, 6, 9, 6, 2, 9, 3
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The length of row n in A001269.

Examples

			a(3) = 2 because 2^3 + 1 = 9 = 3*3.
		

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), this sequence (b=2).
Cf. A046051 (number of prime factors of 2^n-1).
Cf. A086257 (number of primitive prime factors).

Programs

Formula

a(n) = A046051(2n) - A046051(n). - T. D. Noe, Jun 18 2003
a(n) = A001222(A000051(n)). - Amiram Eldar, Oct 04 2019

Extensions

Extended by Patrick De Geest, Oct 01 2000
Terms to a(500) in b-file from T. D. Noe, Nov 10 2007
Deleted duplicate (and broken) Wagstaff link. - N. J. A. Sloane, Jan 18 2019
a(500)-a(1062) in b-file from Amiram Eldar, Oct 04 2019
a(1063)-a(1128) in b-file from Max Alekseyev, Jul 15 2023, Mar 15 2025

A054991 Number of prime divisors of n! - 1 (counted with multiplicity).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 1, 2, 3, 2, 4, 1, 2, 1, 5, 2, 3, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 1, 3, 1, 1, 2, 3, 2, 5, 1, 4, 2, 4, 4, 7, 4, 5, 5, 2, 4, 3, 2, 5, 5, 4, 6, 6, 5, 6, 5, 2, 3, 4, 4, 5, 4, 6, 4, 7, 2, 6, 5, 5, 3, 4, 5, 7, 3, 5, 4, 2, 4, 4, 4, 4, 6, 2, 3, 4
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The series is related to the product of primes and the "proof" of the existence of infinite many prime twins.

Examples

			a(2)=0 because 2! - 1 = 1 (and this is not a prime number) a(5)=2 because 5! -1 = 119 = 7 * 17
		

Crossrefs

Programs

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
More terms from Amiram Eldar, Oct 03 2019

A054990 Number of prime divisors of n! + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 2, 2, 3, 5, 3, 6, 2, 2, 3, 3, 4, 2, 2, 2, 1, 2, 3, 5, 4, 4, 5, 2, 5, 6, 1, 2, 4, 7, 1, 3, 4, 3, 3, 3, 4, 2, 5, 5, 6, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 3, 5, 3, 4, 5, 4, 5, 6, 5, 2, 7, 1, 4, 2, 3, 1, 6, 3, 4, 7, 3, 3, 3, 5, 5, 4, 3, 8, 3, 6, 2, 4, 3, 4, 5, 6, 6, 5, 5, 4, 5
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The smallest k! with n prime factors occurs for n in A060250.
103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153-digit composite is factored. a(104) = 4 and a(105) = 6. - Rick L. Shepherd, Jun 10 2003

Examples

			a(2)=2 because 4! + 1 = 25 = 5*5
		

Crossrefs

Cf. A000040 (prime numbers), A001359 (twin primes).
Cf. A066856 (number of distinct prime divisors of n!+1), A084846 (mu(n!+1)).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[q!+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    A054990[n_Integer] := PrimeOmega[n! + 1]; Table[A054990[n], {n,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    for(n=1,64,print1(bigomega(n!+1),","))

Extensions

More terms from Robert G. Wilson v, Mar 23 2001
More terms from Rick L. Shepherd, Jun 10 2003

A054988 Number of prime divisors of 1 + (product of first n primes), with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 4, 2, 2, 4, 2, 3, 2, 4, 3, 2, 4, 4, 3, 3, 5, 3, 6, 2, 3, 2, 5, 4, 4, 2, 6, 3, 4, 3, 5, 6, 7, 2, 6, 3, 5, 3, 4, 2, 6, 5, 4, 5, 3, 5, 5, 5, 3, 3, 5, 5, 6, 3, 4, 4, 7, 5, 3, 4, 1, 2, 5, 5, 5, 4, 5, 3, 5, 4, 6, 5, 8
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

Prime divisors are counted with multiplicity. - Harvey P. Dale, Oct 23 2020
It is an open question as to whether omega(p#+1) = bigomega(p#+1) = a(n); that is, as to whether the Euclid numbers are squarefree. Any square dividing p#+1 must exceed 2.5*10^15 (see Vardi, p. 87). - Sean A. Irvine, Oct 21 2023

Examples

			a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
		

References

  • Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.

Crossrefs

Programs

  • Maple
    A054988 := proc(n)
        numtheory[bigomega](1+mul(ithprime(i),i=1..n)) ;
    end proc:
    seq(A054988(n),n=1..20) ; # R. J. Mathar, Mar 09 2022
  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#+1]&/@FoldList[Times,Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
  • PARI
    a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = A001222(A006862(n)). - Michel Marcus, Mar 07 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019

A104360 Number of distinct prime factors of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 3, 1, 3, 3, 3, 1, 2, 4, 4, 2, 2, 5, 4, 2, 3, 2, 3, 1, 3, 4, 3, 5, 3, 4, 4, 5, 1, 3, 4, 2, 2, 2, 3, 1, 2, 3, 2, 3, 1, 4, 1, 3, 4, 6, 4, 4, 2, 6, 1, 5, 4, 4, 1, 2, 5, 7, 4, 5, 3, 4, 4, 5, 4, 5, 2, 4, 4, 5, 3, 3, 3, 2, 5, 2, 5, 4, 7, 2, 5, 3, 2, 6, 3, 4, 2, 3, 3, 3, 5, 4, 3, 5, 2
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; PrimeNu[Table[A104350[n] - 1, {n, 2,50}]] (* G. C. Greubel, May 10 2017 *)

Formula

a(n) = A001221(A104357(n)).

Extensions

a(51)-a(74) from Amiram Eldar, Feb 12 2020
More terms from Jinyuan Wang, Apr 02 2020
Terms a(90) onward from Max Alekseyev, Oct 03 2022

A059958 Smallest number m such that m*(m+1) has at least n distinct prime factors.

Original entry on oeis.org

1, 2, 5, 14, 65, 209, 714, 7314, 38570, 254540, 728364, 11243154, 58524465, 812646120, 5163068910, 58720148850, 555409903685, 4339149420605, 69322940121435, 490005293940084, 5819629108725509, 76622240600506314
Offset: 1

Views

Author

Labos Elemer, Mar 02 2001

Keywords

Comments

The original definition left unclear whether "at least" or "exactly" n prime factors are required. Now the "at least" variant was chosen, for the other variant ("exactly"), see A069354: At least up to a(18), both criteria yield the same number, and therefore a(n) = A069354(n) - 1, since m and m+1 are always coprime. - M. F. Hasler, Jan 15 2014
10^13 < a(19) <= 69322940121435. - Giovanni Resta, Mar 24 2020
Terms a(1)-a(10) appear in Erdős and Nicolas (1978-1979). - Amiram Eldar, Jun 24 2023

Examples

			For n = 9, a(9)*(a(9) + 1) = 38570*38571 = (2*5*7*19*29)*(3*13*23*43) with 9 distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Map[PrimeNu[Times @@ #] &, Partition[Range[10^6], 2, 1]]}, Array[FirstPosition[s, n_/; n>=#][[1]] &, Max@ s]] (* Michael De Vlieger, Nov 02 2017 *)
  • PARI
    a(n) = my(m=1); while(omega(m*(m+1)) < n, m++); m; \\ Michel Marcus, Jul 09 2018

Formula

a(n) = Min_{ m | A001221(m*(m+1)) >= n }.
a(n) <= A002110(n) - 1 because A001221((q-1)*q) >= n+1 for q = A002110(n).
Conjecture: a(n) = A069354(n) - 1. - Robert G. Wilson v, Feb 18 2014

Extensions

More terms from William Rex Marshall, Mar 18 2001
Offset corrected and a(15)-a(16) from Donovan Johnson, Jan 31 2009
a(17) from Donovan Johnson, Sep 15 2010
a(18) from Don Reble, Jan 15 2014
Edited by M. F. Hasler, Jan 15 2014
a(19)-a(20) from Michael S. Branicky, Feb 08 2023
a(21) from Michael S. Branicky, Feb 10 2023
a(22) from Michael S. Branicky, Feb 23 2023

A366809 The sum of the divisors of prime(n)#-1 where p# is the product of all the primes from 2 to p inclusive.

Original entry on oeis.org

1, 6, 30, 240, 2310, 30030, 518940, 9943560, 230876448, 6551588160, 200561595684, 7471933410000, 304250263527210, 13082853940673340, 618109122639794688, 32589631537463089128, 1922760350251477679196, 117386696543681561301312, 7906535060701218163040640
Offset: 1

Views

Author

Sean A. Irvine, Oct 23 2023

Keywords

Examples

			a(4)=240 because the divisors of 7#-1 = 209 are {1, 11, 19, 209}.
		

Crossrefs

Programs

  • Maple
    seq(numtheory[sigma](mul(ithprime(k), k=1..n)-1), n=1..30);

Formula

a(n) = sigma(prime(n)#-1) = A000230(A057588(n)).

A366808 The number of divisors of prime(n)#-1 where p# is the product of all the primes from 2 to p inclusive.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 4, 8, 8, 4, 4, 16, 2, 4, 8, 8, 4, 8, 8, 4, 4, 16, 8, 2, 4, 4, 16, 16, 16, 8, 8, 8, 8, 8, 8, 16, 16, 16, 32, 8, 32, 16, 32, 16, 16, 16, 16, 4, 8, 8, 4, 16, 8, 16, 4, 16, 16, 128, 16, 8, 8, 16, 16, 8, 8, 2, 8, 2, 16, 8, 32, 32, 16, 16, 64, 32
Offset: 1

Views

Author

Sean A. Irvine, Oct 23 2023

Keywords

Examples

			a(4)=4 because the divisors of 7#-1 = 209 are {1, 11, 19, 209}.
		

Crossrefs

Programs

  • Maple
    seq(numtheory[tau](mul(ithprime(k), k=1..n)-1), n=1..30);
  • Mathematica
    Map[DivisorSigma[0, #] &, -1 + FoldList[Times, Prime@ Range@ 30] ] (* Michael De Vlieger, Oct 25 2023 *)

Formula

a(n) = sigma0(prime(n)#-1) = A000005(A057588(n)).
Showing 1-10 of 10 results.