cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A046051 Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8
Offset: 1

Views

Author

Keywords

Comments

Length of row n of A001265.

Examples

			a(4) = 2 because 2^4 - 1 = 15 = 3*5.
From _Gus Wiseman_, Jul 04 2019: (Start)
The sequence of Mersenne numbers together with their prime indices begins:
        1: {}
        3: {2}
        7: {4}
       15: {2,3}
       31: {11}
       63: {2,2,4}
      127: {31}
      255: {2,3,7}
      511: {4,21}
     1023: {2,5,11}
     2047: {9,24}
     4095: {2,2,3,4,6}
     8191: {1028}
    16383: {2,14,31}
    32767: {4,11,36}
    65535: {2,3,7,55}
   131071: {12251}
   262143: {2,2,2,4,8,21}
   524287: {43390}
  1048575: {2,3,3,5,11,13}
(End)
		

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), this sequence (b=2).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]]
    a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n,200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013

Formula

Mobius transform of A085021. - T. D. Noe, Jun 19 2003
a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019

A054992 Number of prime factors of 2^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 4, 3, 2, 2, 2, 3, 4, 1, 2, 4, 2, 2, 4, 3, 2, 3, 4, 4, 6, 2, 3, 6, 2, 2, 5, 4, 5, 4, 3, 4, 4, 2, 3, 6, 2, 3, 7, 5, 3, 3, 3, 7, 6, 3, 3, 6, 6, 3, 5, 3, 4, 4, 2, 5, 7, 2, 6, 6, 3, 4, 5, 7, 3, 5, 3, 5, 7, 4, 6, 10, 2, 3, 10, 5, 6, 5, 4, 5, 5, 4, 4, 11, 6, 2, 5, 4, 5, 3, 5, 6, 9, 6, 2, 9, 3
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The length of row n in A001269.

Examples

			a(3) = 2 because 2^3 + 1 = 9 = 3*3.
		

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), this sequence (b=2).
Cf. A046051 (number of prime factors of 2^n-1).
Cf. A086257 (number of primitive prime factors).

Programs

Formula

a(n) = A046051(2n) - A046051(n). - T. D. Noe, Jun 18 2003
a(n) = A001222(A000051(n)). - Amiram Eldar, Oct 04 2019

Extensions

Extended by Patrick De Geest, Oct 01 2000
Terms to a(500) in b-file from T. D. Noe, Nov 10 2007
Deleted duplicate (and broken) Wagstaff link. - N. J. A. Sloane, Jan 18 2019
a(500)-a(1062) in b-file from Amiram Eldar, Oct 04 2019
a(1063)-a(1128) in b-file from Max Alekseyev, Jul 15 2023, Mar 15 2025

A054991 Number of prime divisors of n! - 1 (counted with multiplicity).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 1, 2, 3, 2, 4, 1, 2, 1, 5, 2, 3, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 1, 3, 1, 1, 2, 3, 2, 5, 1, 4, 2, 4, 4, 7, 4, 5, 5, 2, 4, 3, 2, 5, 5, 4, 6, 6, 5, 6, 5, 2, 3, 4, 4, 5, 4, 6, 4, 7, 2, 6, 5, 5, 3, 4, 5, 7, 3, 5, 4, 2, 4, 4, 4, 4, 6, 2, 3, 4
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The series is related to the product of primes and the "proof" of the existence of infinite many prime twins.

Examples

			a(2)=0 because 2! - 1 = 1 (and this is not a prime number) a(5)=2 because 5! -1 = 119 = 7 * 17
		

Crossrefs

Programs

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
More terms from Amiram Eldar, Oct 03 2019

A054989 Number of prime divisors of -1 + (product of first n primes).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 3, 2, 2, 4, 1, 2, 3, 3, 2, 3, 3, 2, 2, 4, 3, 1, 2, 2, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 3, 5, 4, 5, 4, 4, 4, 4, 2, 3, 3, 2, 4, 3, 4, 2, 4, 4, 7, 4, 3, 3, 4, 4, 3, 3, 1, 3, 1, 4, 3, 5, 5, 4, 4, 6, 5, 5, 3, 4, 3, 4, 4, 3, 4, 2, 3, 4
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Examples

			a(4)=2 because 2*3*5*7 - 1 = 209 = 11*19
		

Crossrefs

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]-1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#] & /@ (FoldList[Times, Prime[Range[81]]] - 1) (* Harvey P. Dale, Mar 11 2017 *)

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(42)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019

A054988 Number of prime divisors of 1 + (product of first n primes), with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 4, 2, 2, 4, 2, 3, 2, 4, 3, 2, 4, 4, 3, 3, 5, 3, 6, 2, 3, 2, 5, 4, 4, 2, 6, 3, 4, 3, 5, 6, 7, 2, 6, 3, 5, 3, 4, 2, 6, 5, 4, 5, 3, 5, 5, 5, 3, 3, 5, 5, 6, 3, 4, 4, 7, 5, 3, 4, 1, 2, 5, 5, 5, 4, 5, 3, 5, 4, 6, 5, 8
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

Prime divisors are counted with multiplicity. - Harvey P. Dale, Oct 23 2020
It is an open question as to whether omega(p#+1) = bigomega(p#+1) = a(n); that is, as to whether the Euclid numbers are squarefree. Any square dividing p#+1 must exceed 2.5*10^15 (see Vardi, p. 87). - Sean A. Irvine, Oct 21 2023

Examples

			a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
		

References

  • Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.

Crossrefs

Programs

  • Maple
    A054988 := proc(n)
        numtheory[bigomega](1+mul(ithprime(i),i=1..n)) ;
    end proc:
    seq(A054988(n),n=1..20) ; # R. J. Mathar, Mar 09 2022
  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#+1]&/@FoldList[Times,Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
  • PARI
    a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = A001222(A006862(n)). - Michel Marcus, Mar 07 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019

A066856 a(n) = omega(n!+1), where omega is the number of distinct primes dividing n, A001221.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 5, 3, 6, 2, 2, 3, 3, 3, 2, 2, 2, 1, 2, 3, 5, 4, 4, 5, 2, 5, 6, 1, 2, 4, 7, 1, 3, 4, 3, 3, 3, 4, 2, 5, 5, 6, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 3, 5, 3, 4, 5, 4, 5, 6, 5, 2, 7, 1, 4, 2, 3, 1, 6, 3, 4, 7, 3, 3, 3, 5, 5, 4, 3, 8, 3, 6, 2, 4, 3, 4, 5, 6, 6, 5, 5, 4, 5
Offset: 1

Views

Author

Robert G. Wilson v, Jan 21 2002

Keywords

Comments

103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153-digit composite is factored. a(104) = 4 and a(105) = 6. - Rick L. Shepherd, Jun 09 2003

Crossrefs

Cf. A054990 (bigomega(n!+1)), A002981 (n!+1 is prime), A064237 (n!+1 divisible by a square), A084846 (mu(n!+1)).

Programs

  • Magma
    [#PrimeDivisors(Factorial(n) + 1): n in [1..55]]; // Vincenzo Librandi, Oct 11 2018
  • Mathematica
    Table[ Length[ FactorInteger[ n! + 1]], {n, 1, 15}]
    PrimeNu[Range[50]! + 1] (* Paolo Xausa, Feb 07 2025 *)
  • PARI
    for(n=1,64,print1(omega(n!+1),","))
    

Extensions

More terms from Rick L. Shepherd, Jun 09 2003

A084846 mu(n!+1), where mu is the Moebius function (A008683).

Original entry on oeis.org

-1, -1, -1, -1, 0, 0, 1, 0, 1, -1, 1, -1, 0, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1
Offset: 0

Views

Author

Rick L. Shepherd, Jun 10 2003

Keywords

Examples

			a(6)=1 because 6!+1 = 721 = 7 * 103, the product of two different primes and thus mu(6!+1) = (-1)^2 = 1.
		

Crossrefs

Cf. A008683 (mu(n)), A054990 (bigomega(n!+1)), A066856 (omega(n!+1)), A064237 (n!+1 divisible by a square), A002981 (n!+1 is prime).

Programs

  • Magma
    [MoebiusMu(Factorial(n)+1) : n in [1..45]];
    
  • Mathematica
    MoebiusMu[Range[0, 50]! + 1] (* Paolo Xausa, Feb 07 2025 *)
  • PARI
    for(n=0,45,print1(moebius(n!+1),","))

Formula

If n is in A064237, then a(n) = 0. Otherwise a(n) = (-1)^A054990(n) = (-1)^A066856(n). - Max Alekseyev, Oct 08 2019

Extensions

a(112) corrected, a(113)-a(114) added by Max Alekseyev, May 28 2015
a(106)-a(107) corrected by Amiram Eldar, Oct 03 2019

A193295 Number of prime divisors (with multiplicity) of n^2 - 1.

Original entry on oeis.org

1, 3, 2, 4, 2, 5, 3, 5, 3, 5, 2, 5, 3, 6, 3, 7, 2, 6, 3, 5, 3, 6, 3, 6, 5, 5, 4, 6, 2, 8, 3, 7, 4, 6, 3, 6, 3, 6, 3, 7, 2, 6, 4, 5, 4, 7, 3, 8, 4, 6, 3, 7, 3, 8, 4, 6, 3, 6, 2, 6, 4, 8, 5, 9, 3, 6, 3, 6, 3, 8, 2, 7, 4, 5, 5, 6, 3, 8, 5, 7, 5, 6, 3, 6, 4, 6
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

A060250 The smallest k such that k! + 1 has exactly n prime factors (with multiplicity).

Original entry on oeis.org

1, 4, 9, 23, 16, 18, 40, 89
Offset: 1

Views

Author

Robert G. Wilson v, Mar 23 2001

Keywords

Crossrefs

Cf. A054990.

Programs

Extensions

a(8) from Arkadiusz Wesolowski, Apr 25 2012
Title clarified by Sean A. Irvine, Nov 02 2022

A064186 Numbers n such that n!+1 and n!-1 have the same number of prime divisors (with repetition).

Original entry on oeis.org

3, 5, 8, 9, 10, 13, 17, 20, 22, 24, 26, 34, 39, 53, 59, 61, 63, 69, 70, 76, 80, 87, 97, 99, 103, 124, 130
Offset: 1

Views

Author

Jason Earls, Sep 20 2001

Keywords

Comments

200, 236, 392 and 634 are terms. - Chai Wah Wu, Jan 03 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[30], PrimeOmega[#! - 1] == PrimeOmega[#! + 1] &] (* Amiram Eldar, Dec 01 2019 *)
  • PARI
    for(n=2,100, if(bigomega(n!+1)==bigomega(n!-1),print(n)))

Extensions

a(15)-a(25) from Donovan Johnson, Mar 09 2008
Offset corrected by Donovan Johnson, Jul 11 2013
a(26)-a(27) from Amiram Eldar, Dec 01 2019
Showing 1-10 of 10 results.