cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A054990 Number of prime divisors of n! + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 2, 2, 3, 5, 3, 6, 2, 2, 3, 3, 4, 2, 2, 2, 1, 2, 3, 5, 4, 4, 5, 2, 5, 6, 1, 2, 4, 7, 1, 3, 4, 3, 3, 3, 4, 2, 5, 5, 6, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 3, 5, 3, 4, 5, 4, 5, 6, 5, 2, 7, 1, 4, 2, 3, 1, 6, 3, 4, 7, 3, 3, 3, 5, 5, 4, 3, 8, 3, 6, 2, 4, 3, 4, 5, 6, 6, 5, 5, 4, 5
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The smallest k! with n prime factors occurs for n in A060250.
103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153-digit composite is factored. a(104) = 4 and a(105) = 6. - Rick L. Shepherd, Jun 10 2003

Examples

			a(2)=2 because 4! + 1 = 25 = 5*5
		

Crossrefs

Cf. A000040 (prime numbers), A001359 (twin primes).
Cf. A066856 (number of distinct prime divisors of n!+1), A084846 (mu(n!+1)).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[q!+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    A054990[n_Integer] := PrimeOmega[n! + 1]; Table[A054990[n], {n,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    for(n=1,64,print1(bigomega(n!+1),","))

Extensions

More terms from Robert G. Wilson v, Mar 23 2001
More terms from Rick L. Shepherd, Jun 10 2003

A104368 Number of distinct prime factors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 4, 4, 2, 1, 4, 2, 2, 3, 2, 1, 4, 3, 3, 1, 3, 4, 5, 4, 5, 4, 3, 3, 4, 7, 2, 5, 4, 4, 2, 4, 3, 4, 2, 3, 7, 4, 2, 4, 2, 3, 2, 4, 3, 4, 5, 3, 4, 4, 2, 1, 2, 4, 6, 4, 3, 3, 4, 4, 6, 6, 6, 5, 3, 6, 4, 5, 3, 3, 5, 3, 4, 3, 4, 7, 6, 4, 3, 4, 2, 3, 3, 2, 2, 5, 2, 3, 3, 6, 4, 3, 3, 2, 3, 2, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; PrimeNu[
    Table[A104350[n] + 1, {n, 2, 50}]] (* G. C. Greubel, May 10 2017 *)

Formula

a(n) = A001221(A104365(n)).

Extensions

a(51)-a(76) from Amiram Eldar, Feb 12 2020
a(77)-a(81) from Jinyuan Wang, Apr 02 2020
Terms a(82) onward from Max Alekseyev, Oct 03 2022

A084846 mu(n!+1), where mu is the Moebius function (A008683).

Original entry on oeis.org

-1, -1, -1, -1, 0, 0, 1, 0, 1, -1, 1, -1, 0, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1
Offset: 0

Views

Author

Rick L. Shepherd, Jun 10 2003

Keywords

Examples

			a(6)=1 because 6!+1 = 721 = 7 * 103, the product of two different primes and thus mu(6!+1) = (-1)^2 = 1.
		

Crossrefs

Cf. A008683 (mu(n)), A054990 (bigomega(n!+1)), A066856 (omega(n!+1)), A064237 (n!+1 divisible by a square), A002981 (n!+1 is prime).

Programs

  • Magma
    [MoebiusMu(Factorial(n)+1) : n in [1..45]];
    
  • Mathematica
    MoebiusMu[Range[0, 50]! + 1] (* Paolo Xausa, Feb 07 2025 *)
  • PARI
    for(n=0,45,print1(moebius(n!+1),","))

Formula

If n is in A064237, then a(n) = 0. Otherwise a(n) = (-1)^A054990(n) = (-1)^A066856(n). - Max Alekseyev, Oct 08 2019

Extensions

a(112) corrected, a(113)-a(114) added by Max Alekseyev, May 28 2015
a(106)-a(107) corrected by Amiram Eldar, Oct 03 2019

A066835 a(n) = omega((prime(n)-1)! + 1), where omega is given by A001221, primes in A000040.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 6, 3, 2, 5, 6, 7, 3, 3, 4, 4, 4, 5, 5, 7, 6, 3, 3, 5, 5, 5, 6, 6, 6, 6, 4, 4, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2002

Keywords

Examples

			a(7) = omega((prime(7)-1)! + 1) = omega((17-1)! + 1) = omega(16! + 1) = omega(20922789888000 + 1) = omega(20922789888001) = 5, as 20922789888001 = 17 * 61 * 137 * 139 * 1059511 = prime(7)*prime(18)*prime(33)*prime(34)*prime(82801).
		

Crossrefs

Programs

  • Mathematica
    Table[ Length[ FactorInteger[ (Prime[ n ] - 1)! + 1 ] ], {n, 1, 15} ]
    PrimeNu[(Prime[Range[15]] - 1)! + 1] (* Paolo Xausa, Feb 07 2025 *)
  • PARI
    a(n) = omega((prime(n)-1)! + 1); \\ Jinyuan Wang, Apr 01 2020

Formula

a(n) = A066856(A006093(n)). - Jinyuan Wang, Apr 01 2020

Extensions

More terms from Robert G. Wilson v, Jan 21 2002
a(27)-a(34) from Jinyuan Wang, Apr 01 2020

A180325 a(n) = k is the smallest number such that n is the number of distinct primes dividing k! + 1.

Original entry on oeis.org

1, 6, 9, 31, 16, 18, 40, 89
Offset: 1

Views

Author

Michel Lagneau, Jan 18 2011

Keywords

Comments

A greedy inverse to A066856. - R. J. Mathar, Jan 21 2011

Examples

			a(6) = 18 because the 6 distinct primes dividing 18! + 1 = 6402373705728001
  are {19, 23, 29, 61, 67, 123610951}.
		

Crossrefs

Cf. A038507.

Programs

  • Maple
    with(numtheory):for n from 1 to 7 do:ind:=0:for k from 1 to 50 while(ind=0)
      do: x:=k!+1:y:=nops(factorset(x)):if y=n then ind:=1:printf(`%d, `,k):else fi:od:
      od:
Showing 1-5 of 5 results.