cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054990 Number of prime divisors of n! + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 2, 2, 3, 5, 3, 6, 2, 2, 3, 3, 4, 2, 2, 2, 1, 2, 3, 5, 4, 4, 5, 2, 5, 6, 1, 2, 4, 7, 1, 3, 4, 3, 3, 3, 4, 2, 5, 5, 6, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 3, 5, 3, 4, 5, 4, 5, 6, 5, 2, 7, 1, 4, 2, 3, 1, 6, 3, 4, 7, 3, 3, 3, 5, 5, 4, 3, 8, 3, 6, 2, 4, 3, 4, 5, 6, 6, 5, 5, 4, 5
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The smallest k! with n prime factors occurs for n in A060250.
103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153-digit composite is factored. a(104) = 4 and a(105) = 6. - Rick L. Shepherd, Jun 10 2003

Examples

			a(2)=2 because 4! + 1 = 25 = 5*5
		

Crossrefs

Cf. A000040 (prime numbers), A001359 (twin primes).
Cf. A066856 (number of distinct prime divisors of n!+1), A084846 (mu(n!+1)).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[q!+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    A054990[n_Integer] := PrimeOmega[n! + 1]; Table[A054990[n], {n,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    for(n=1,64,print1(bigomega(n!+1),","))

Extensions

More terms from Robert G. Wilson v, Mar 23 2001
More terms from Rick L. Shepherd, Jun 10 2003

A066856 a(n) = omega(n!+1), where omega is the number of distinct primes dividing n, A001221.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 5, 3, 6, 2, 2, 3, 3, 3, 2, 2, 2, 1, 2, 3, 5, 4, 4, 5, 2, 5, 6, 1, 2, 4, 7, 1, 3, 4, 3, 3, 3, 4, 2, 5, 5, 6, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 3, 5, 3, 4, 5, 4, 5, 6, 5, 2, 7, 1, 4, 2, 3, 1, 6, 3, 4, 7, 3, 3, 3, 5, 5, 4, 3, 8, 3, 6, 2, 4, 3, 4, 5, 6, 6, 5, 5, 4, 5
Offset: 1

Views

Author

Robert G. Wilson v, Jan 21 2002

Keywords

Comments

103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153-digit composite is factored. a(104) = 4 and a(105) = 6. - Rick L. Shepherd, Jun 09 2003

Crossrefs

Cf. A054990 (bigomega(n!+1)), A002981 (n!+1 is prime), A064237 (n!+1 divisible by a square), A084846 (mu(n!+1)).

Programs

  • Magma
    [#PrimeDivisors(Factorial(n) + 1): n in [1..55]]; // Vincenzo Librandi, Oct 11 2018
  • Mathematica
    Table[ Length[ FactorInteger[ n! + 1]], {n, 1, 15}]
    PrimeNu[Range[50]! + 1] (* Paolo Xausa, Feb 07 2025 *)
  • PARI
    for(n=1,64,print1(omega(n!+1),","))
    

Extensions

More terms from Rick L. Shepherd, Jun 09 2003

A063684 Numbers k such that m(k!) = 2, where m(k) = mu(k) + mu(k+1) + mu(k+2).

Original entry on oeis.org

8, 13, 14, 18, 19, 20, 25, 36, 38, 43, 48, 51, 52, 54, 60, 71, 74, 75, 78, 80, 87, 91, 92, 105, 108, 110, 112, 114
Offset: 1

Views

Author

Jason Earls, Aug 22 2001

Keywords

Comments

Equivalently, k such that m(k!) = 2, where m(k) = mu(k+1) + mu(k+2), as mu(k!)=0 for all k >= 4 (because 4=2^2 divides k!). - Rick L. Shepherd, Aug 20 2003
127 belongs to the sequence. - Serge Batalov, Feb 17 2011

Examples

			8 is a term: 8! = 40320; mu(40320) = 0, mu(40321) = 1, mu(40322) = 1, 0+1+1 = 2.
98 is not a term because 98! + 2 = 2 * 31003012014959 * 114951592532951 * 2015644865638913835753087050212028452990938458387 * P78 has an odd number of factors. - _Sean A. Irvine_, Feb 03 2010
		

Crossrefs

Cf. A084846 (mu(n!+1)).

Programs

  • PARI
    m(n) = moebius(n)+moebius(n+1)+moebius(n+2); for(n=1,10^4, if(m(n!)==2,print(n)))

Extensions

More terms from Rick L. Shepherd, Aug 20 2003
Two more terms from Sean A. Irvine, Feb 03 2010, Feb 08 2010
Two new terms, 105 and 108, from Daniel M. Jensen, Feb 19 2011, Mar 02 2011
Two more terms, 110 and 112, from Serge Batalov, Mar 04-05 2011
One more term, 114, from Sean A. Irvine, May 25 2015
Showing 1-3 of 3 results.