cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A280713 Partial sums of A055067 where A055067(n) is the product of non-divisors of n.

Original entry on oeis.org

1, 2, 4, 7, 31, 51, 771, 1401, 14841, 51129, 3679929, 3957129, 482958729, 927745929, 6739632009, 27172044009, 20949961932009, 22047762636009, 6424421468364009, 6728534219386089, 122581010799226089, 2444896564058746089, 1126445624341666426089
Offset: 1

Views

Author

Jaroslav Krizek, Jan 07 2017

Keywords

Comments

A055067(n) = the product of non-divisors of n.

Crossrefs

Programs

  • Magma
    [&+[Factorial(k) / &*[d: d in Divisors(k)]: k in [1..n]]: n in [1..100]];
  • Mathematica
    Accumulate[Array[#!/Times@@Divisors[#] &, 30]]

Formula

a(n) = Sum_{i=1..n} A055067(i).

A280714 Partial products of A055067.

Original entry on oeis.org

1, 1, 2, 6, 144, 2880, 2073600, 1306368000, 17557585920000, 637129677864960000, 2312016175036366848000000, 640890883720080890265600000000, 306987758727332698566646824960000000000, 136544225638605874463902854662848512000000000000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 07 2017

Keywords

Comments

A055067(n) = the product of non-divisors of n.

Crossrefs

Programs

  • Magma
    [&*[Factorial(k) / &*[d: d in Divisors(k)]: k in [1..n]]: n in [1..100]];
  • Mathematica
    FoldList[#1 #2 &, Table[Times @@ Complement[Range@ n, Divisors@ n], {n, 14}]] (* Michael De Vlieger, Jan 09 2017 *)

Formula

a(n) = Product_{i=1..n} A055067(i).
a(n) = A000178(n)/A092143(n). - Amiram Eldar, Aug 16 2025

A173540 Triangle read by rows in which row n lists the proper nondivisors of n, or zero if n <= 2.

Original entry on oeis.org

0, 0, 2, 3, 2, 3, 4, 4, 5, 2, 3, 4, 5, 6, 3, 5, 6, 7, 2, 4, 5, 6, 7, 8, 3, 4, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 7, 8, 9, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7
Offset: 1

Views

Author

Omar E. Pol, May 24 2010

Keywords

Comments

Define "proper nondivisors of n" as the positive numbers less than n that do not divide n.
Note that a(1) = 0 and a(2) = 0, by convention.
Row sums give A024816.
Row products give A055067, except the first two rows. - Reinhard Zumkeller, Feb 06 2012
T(n,1) = A199968(n). - Reinhard Zumkeller, Oct 02 2015
The n-th row has A049820(n) terms. - Michel Marcus, Dec 23 2015

Examples

			If written as a triangle:
  0;
  0;
  2;
  3;
  2, 3, 4;
  4, 5;
  2, 3, 4, 5,  6;
  3, 5, 6, 7;
  2, 4, 5, 6,  7,  8;
  3, 4, 6, 7,  8,  9;
  2, 3, 4, 5,  6,  7,  8,  9, 10;
  5, 7, 8, 9, 10, 11;
  2, 3, 4, 5,  6,  7,  8,  9, 10, 11, 12;
  3, 4, 5, 6,  8,  9, 10, 11, 12, 13;
  2, 4, 6, 7,  8,  9, 10, 11, 12, 13, 14;
  3, 5, 6, 7,  9, 10, 11, 12, 13, 14, 15;
		

Crossrefs

Cf. A199968, A024816 (row sums).

Programs

  • Haskell
    a173540 n k = a173540_row n !! (k-1)
    a173540_row n = a173540_tabf !! (n-1)
    a173540_tabf = [0] : [0] : map
                   (\v -> [w | w <- [2 .. v - 1], mod v w > 0]) [3..]
    -- Reinhard Zumkeller, Oct 02 2015, Feb 06 2012
  • Mathematica
    Join[{0, 0}, Flatten[Table[Complement[Range[n], Divisors[n]], {n, 1, 20}]]] (* Geoffrey Critzer, Dec 13 2014 *)

A067391 a(n) is the least common multiple of numbers in {1,2,3,...,n-1} which do not divide n.

Original entry on oeis.org

1, 1, 2, 3, 12, 20, 60, 210, 840, 504, 2520, 27720, 27720, 51480, 360360, 180180, 720720, 4084080, 12252240, 232792560, 232792560, 21162960, 232792560, 5354228880, 5354228880, 2059318800, 26771144400, 80313433200, 80313433200
Offset: 1

Views

Author

Labos Elemer, Jan 22 2002

Keywords

Examples

			For n=10: non-divisors = {3,4,6,7,8,9}, lcm(3,4,6,7,8,9) = 8*9*7 = 504 = a(10).
For n=18, a(18) = lcm(4,5,7,8,10,11,12,13,14,15,16,17) = 4084080.
		

Crossrefs

Cf. A049820 [count], A007978 [min], A024816 [sum], A055067 [product].
Cf. A173540.

Programs

  • Haskell
    a067391 n | n <= 2    = 1
              | otherwise = foldl lcm 1 $ a173540_row n
    -- Reinhard Zumkeller, Apr 04 2012
  • Mathematica
    a[n_] := LCM@@Select[Range[1, n-1], Mod[n, # ]!=0& ]
    Join[{1,1},Table[LCM@@Complement[Range[n],Divisors[n]],{n,3,30}]] (* Harvey P. Dale, Mar 27 2013 *)

Formula

Let f(n) = lcm(1, 2, ..., n-1) = A003418(n-1). If n = 2*p^k for some prime p, then a(n) = f(n)/p; otherwise a(n) = f(n).

A070251 Unrelated-factorial numbers: product of numbers unrelated to n (numbers which have a common divisor with n but do not divide n).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 6, 6, 192, 1, 720, 1, 23040, 6480, 10080, 1, 12902400, 1, 34836480, 2449440, 1857945600, 1, 50295168000, 3000, 980995276800, 9797760, 9564703948800, 1, 1518492398911488000, 1, 41845579776000, 1571364748800
Offset: 1

Views

Author

Amarnath Murthy, May 05 2002

Keywords

Comments

a(p) = 1 if p is a prime. 4 is the only composite number such that a(4) = 1.
From Michael De Vlieger, Jan 15 2025: (Start)
Conjecture: a(n) is in A055932, and also often in A025487.
Conjectures: a(6) = 4 is likely the only powerful term that exceeds 1. a(8) = a(9) = 6 is likely the only squarefree number exceeding 1 that appears in the sequence.
Conjecture: For n = 2*p, p > 3, gcd(n, a(n)) > 1, rad(n) does not divide a(n), and rad(a(n)) does not divide n, since gpf(n) does not divide a(n). For composite n > 9 not an even squarefree semiprime, n divides a(n). (End)

Examples

			Table of a(n) for composite n <= 30, showing prime power decomposition by listing exponents of primes shown in the column heads:
   n                   a(n)   2  3  5  7 11 13
  ---------------------------------------------
   6                     4    2
   8                     6    1, 1
   9                     6    1, 1
  10                   192    6, 1
  12                   720    4, 2, 1
  14                 23040    9, 2, 1
  15                  6480    4, 4, 1
  16                 10080    5, 2, 1, 1
  18              12902400   13, 2, 2, 1
  20              34836480   12, 5, 1, 1
  21               2449440    5, 7, 1, 1
  22            1857945600   17, 4, 2, 1
  24           50295168000   10, 6, 3, 2, 1
  25                  3000    3, 1, 3
  26          980995276800   21, 5, 2, 1, 1
  27               9797760    7, 7, 1, 1
  28         9564703948800   19, 6, 2, 1, 1, 1
  30   1518492398911488000   22,10, 3, 3, 1, 1
		

Crossrefs

Programs

  • Maple
    A070251 := proc(n) local i;
    remove(k->igcd(n,k)=1,{$1..n}); numtheory[divisors](n);
    mul(i, i = %% minus % ) end:   # Peter Luschny, Oct 11 2011
  • Mathematica
    a[n_] := Times @@ Complement[Range[n], Divisors[n]]/Times @@ Select[ Range[n], CoprimeQ[n, #]&];
    Array[a, 33] (* Jean-François Alcover, Jun 03 2019 *)

Formula

a(n) = A055067(n)/A001783(n). - Vladeta Jovovic, May 06 2002
From Michael De Vlieger, Jan 15 2025: (Start)
Let S(n) = { k < n : 1 < gcd(k,n) < k } = row n of A133995 for composite n > 4.
a(n) = product of S(n).
pi(gpf(a(n))) <= pi(n/lpf(n)), i.e., A000720(A006530(a(n))) <= A000720(n/A020639(n)). (End)

Extensions

More terms from Vladeta Jovovic, May 06 2002

A072046 Greatest common divisor of product of divisors of n and product of non-divisors < n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 2, 3, 4, 1, 144, 1, 4, 45, 32, 1, 72, 1, 320, 63, 4, 1, 82944, 125, 4, 729, 448, 1, 162000, 1, 32768, 99, 4, 1225, 3359232, 1, 4, 117, 2560000, 1, 63504, 1, 704, 91125, 4, 1, 254803968, 343, 125000, 153, 832, 1, 8503056, 3025, 9834496, 171, 4, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2002

Keywords

Examples

			a(12) = GCD(A007955(12), A055067(12)) = GCD(1*2*3*4*6*12,5*7*8*9*10*11) = GCD(1728,277200) = 144;
a(13) = GCD(A007955(13), A055067(13)) = GCD(1*13,2*3*4*5*6*7*8*9*10*11*12) = GCD(13,479001600) = 1.
		

Crossrefs

Programs

  • Haskell
    a072046 n = gcd (a007955 n) (a055067 n)
    -- Reinhard Zumkeller, Feb 06 2012
    
  • Mathematica
    a[n_] := (dd = Divisors[n]; GCD[Times @@ dd, Times @@ Complement[Range[n], dd]]); Array[a, 59]
    a[n_] := GCD[(p = n^(DivisorSigma[0, n]/2)), n!/p]; Array[a, 60] (* Amiram Eldar, Jun 26 2022 *)
  • Python
    from math import isqrt, gcd, factorial
    from sympy import divisor_count
    def A072046(n): return gcd(p:=isqrt(n)**c if (c:=divisor_count(n)) & 1 else n**(c//2),factorial(n)//p) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = GCD(A007955(n), A055067(n)).
Showing 1-6 of 6 results.