cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A055204 Squarefree part of n!: n! divided by its largest square divisor.

Original entry on oeis.org

1, 2, 6, 6, 30, 5, 35, 70, 70, 7, 77, 231, 3003, 858, 1430, 1430, 24310, 12155, 230945, 46189, 969969, 176358, 4056234, 676039, 676039, 104006, 312018, 44574, 1292646, 1077205, 33393355, 66786710, 2203961430, 64822395, 90751353, 90751353
Offset: 1

Views

Author

Labos Elemer, Jun 19 2000

Keywords

Comments

Smallest number such that n!*a(n) is a square.

Examples

			10! = 518400*7 = 7*(720)^2, so a(10) = 7.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 01 2024 *)
    a[n_] := Block[{fi = Transpose@ FactorInteger[n!]}, Times @@ (fi[[1]]^Mod[fi[[2]], 2])]; Array[a, 40] (* Robert G. Wilson v, Nov 17 2024 *)
  • PARI
    a(n)=core(n!) \\ Charles R Greathouse IV, Apr 03 2012

Formula

a(n) = A007913(n!) = n!/A055071(n) = A000142(n)/A055071(n).
log a(n) ~ n log 2. - Charles R Greathouse IV, Apr 03 2012
sqrt(n!) = A055772(n) * sqrt(a(n)). - Alonso del Arte, Feb 16 2015

A055773 a(n) = Product_{p in P_n} where P_n = {p prime, n/2 < p <= n }.

Original entry on oeis.org

1, 1, 2, 6, 3, 15, 5, 35, 35, 35, 7, 77, 77, 1001, 143, 143, 143, 2431, 2431, 46189, 46189, 46189, 4199, 96577, 96577, 96577, 7429, 7429, 7429, 215441, 215441, 6678671, 6678671, 6678671, 392863, 392863, 392863, 14535931, 765049, 765049, 765049
Offset: 0

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Comments

Old name: Product of primes p for which p divides n! but p^2 does not (i.e. ord_p(n!)=1). - Dion Gijswijt (gijswijt(AT)science.uva.nl), Jan 07 2007
Squarefree part of n! divided by gcd(Q,F), where Q is the largest square divisor and F is the squarefree part of n!. - Labos Elemer, Jul 12 2000
a(1) = 1, a(n) = n*a(n-1) if n is a prime else a(n) = least integer multiple of a(n-1)/n. - Amarnath Murthy, Apr 29 2004
Let P(i) denote the primorial number A034386(i). Then a(n) = P(n)/P(floor(n/2)). - Peter Luschny, Mar 05 2011
Letting H(n) = 1 + 1/2 + ... + 1/n denote the n-th harmonic number, it is known that a(n) is equal to the denominator (in lowest terms) of H(n)^2*n! for n >= 6 (see below example). - John M. Campbell, Mar 27 2016
For all n satisfying 6 <= n < 897, a(n) = A130087(n). - John M. Campbell, Mar 27 2016
It is also known that a(n) is equal to lcm^2(1, 2, ..., n)/gcd(lcm^2(1, 2, ..., n), n!). - John M. Campbell, Apr 04 2016

Examples

			n = 13, P_n = {7, 11, 13}, a(13) = 7*11*13 = 1001.
Letting n = 14, the denominator (in lowest terms) of H(n)^2*n! = 131803989435744/143 is a(14)=143. - _John M. Campbell_, Mar 27 2016
		

Crossrefs

Programs

  • Maple
    a := n -> mul(k,k=select(isprime,[$iquo(n,2)+1..n])); # Peter Luschny, Jun 20 2009
    A055773 := n -> numer(n!/iquo(n,2)!^4); # Peter Luschny, Jul 30 2011
  • Mathematica
    Table[Numerator[n!/Floor[n/2]!^4], {n, 0, 40}] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    q=1;for(n=2,41,print1(q,",");q=if(isprime(n),q*n,q/gcd(q,n))) \\ Klaus Brockhaus, May 02 2004
    
  • PARI
    a(n) = k=1;forprime(p=nextprime(n\2+1),precprime(n),k=k*p);k \\ Klaus Brockhaus, May 02 2004
    
  • PARI
    a(n) = prod(i=primepi(n/2)+1,primepi(n),prime(i)) \\ John M. Campbell, Mar 27 2016
    
  • Python
    from math import prod
    from sympy import primerange
    def A055773(n): return prod(primerange((n>>1)+1,n+1)) # Chai Wah Wu, Apr 13 2024

Formula

a(n) = numerator(A056040(n)^2/n!).
a(n) = numerator(A056040(n)/floor(n/2)!^2).
a(n) = numerator(n!/floor(n/2)!^4). - Peter Luschny, Jul 30 2011
a(n) = product of primes p such that n/2 < p <= n. - Klaus Brockhaus, May 02 2004
a(n) = A055204(n)/A055230(n) = A055231(n!) = A007913(n!)/A055229(n!).
a(n) = Product_{i=pi(n/2)+1..pi(n)} prime(i), where pi denotes the prime counting function and prime(i) denotes the i-th prime number. - John M. Campbell, Mar 27 2016

Extensions

Entry revised by N. J. A. Sloane, Jan 07 2007
Simpler definition based on a comment of Klaus Brockhaus, set offset to 0 and prepended 1 to data. - Peter Luschny, Mar 09 2013

A055772 Square root of largest square dividing n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 24, 72, 720, 720, 1440, 1440, 10080, 30240, 120960, 120960, 725760, 725760, 7257600, 7257600, 79833600, 79833600, 958003200, 4790016000, 62270208000, 186810624000, 2615348736000, 2615348736000, 15692092416000
Offset: 1

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Examples

			For n=6, 6! = 720 = 144*5 so a(6) = sqrt(144) = 12.
		

Crossrefs

Programs

  • Maple
    a:= proc(n)
    local r,F,t;
    r:= n!;
    F:= ifactors(r)[2];
    mul(t[1]^floor(t[2]/2),t=F)
    end proc:
    seq(a(n), n= 1 .. 100); # Robert Israel, Oct 19 2014
  • Mathematica
    Table[Last[Select[Sqrt[#]&/@Divisors[n!],IntegerQ]],{n,30}] (* Harvey P. Dale, Oct 08 2012 *)
    (Sqrt@Factorial@Range@30)/.Sqrt[]->1 (* _Morgan L. Owens, May 04 2016 *)
    f[p_, e_] := p^Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Jul 26 2024 *)
  • PARI
    a(n)=core(n!,2)[2] \\ Charles R Greathouse IV, Apr 03 2012

Formula

a(n) = A000188(n!) = sqrt(A008833(n!)) = sqrt(A055071(n)).
n! = a(n)^2*A055204(n) = a(n)^2*A007913(n!).
n! = (A000188(n!)^2)*A055229(n!)*A055231(n!).
log(a(n)) ~ n*log(n)/2. - David Radcliffe, Oct 17 2014

A353897 a(n) is the largest divisor of n whose exponents in its prime factorization are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 16, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Examples

			a(27) = 9 since 9 = 3^2 is the largest divisor of 27 with an exponent in its prime factorization, 2, that is a power of 2.
		

Crossrefs

Similar sequences: A000265, A007947, A008834, A055071, A350390.

Programs

  • Mathematica
    f[p_, e_] := p^(2^Floor[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = p^(2^floor(log_2(e))).
a(n) = n if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c*n^2, where c = 0.4616988732... = (1/2) * Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^(f(k-1)+1))/p^(2*k)), f(k) = 2^floor(log_2(k)) and f(0) = 0.

A055230 Greatest common divisor of largest square dividing n! and squarefree part of n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 3, 6, 10, 10, 10, 5, 5, 1, 21, 42, 42, 7, 7, 14, 42, 6, 6, 5, 5, 10, 330, 165, 231, 231, 231, 462, 2002, 5005, 5005, 4290, 4290, 390, 78, 39, 39, 13, 13, 26, 1326, 102, 102, 17, 935, 13090, 746130, 373065, 373065, 24871, 24871
Offset: 1

Views

Author

Labos Elemer, Jun 21 2000

Keywords

Examples

			a(5) = 2 because 5! = 120; largest square divisor is 4, squarefree part is 30; GCD(4, 30) = 2.
a(7) = 1 because 7! = 5040; the largest square divisor is 144 and the squarefree part is 35 and these are coprime.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD[Times @@ Flatten@ Map[Table[#1, 2 Floor[#2/2]] & @@ # &, #], Times @@ Flatten@ Map[Table[#1, Floor[Mod[#2, 2]]] & @@ # &, #]] &@ FactorInteger[n!], {n, 61}] (* Michael De Vlieger, Jul 26 2016 *)
  • PARI
    a(n) = my(fn=n!, cn=core(fn)); gcd(cn, fn/cn); \\ Michel Marcus, Dec 10 2013

Formula

a(n) = GCD(A008833(n!), A007913(n!)) = GCD(A055071(n), A055204(n)).

A065886 Smallest square divisible by n!.

Original entry on oeis.org

1, 1, 4, 36, 144, 3600, 3600, 176400, 2822400, 25401600, 25401600, 3073593600, 110649369600, 18699743462400, 74798973849600, 1869974346240000, 29919589539840000, 8646761377013760000, 77820852393123840000, 28093327713917706240000, 112373310855670824960000
Offset: 0

Views

Author

Henry Bottomley, Nov 27 2001

Keywords

Examples

			a(10) = 25401600 since 10! = 3628800 and the smallest square divisible by this is 25401600 = 3628800*7 = 5040^2
		

Programs

  • Maple
    N:= 50: # to get a(0)..a(N)
    P:= select(isprime, [$2..N]):
    nP:= nops(P):
    V:= Vector(nP):
    A[0]:= 1:
    for n from 1 to N do
      for i from 1 to nP do V[i]:= V[i] + padic:-ordp(n,P[i]) od;
      A[n]:= mul(P[i]^(2*ceil(V[i]/2)),i=1..nP)
    od:
    seq(A[n],n=0..N); # Robert Israel, Jan 30 2017
  • Mathematica
    ssd[n_]:=Module[{nf=n!,k=1},While[!IntegerQ[Sqrt[k*nf]],k++];k*nf]; Array[ssd,20,0] (* Harvey P. Dale, Apr 29 2012 *)

Formula

a(n) = A053143(A000142(n)) = A065887(n)^2 = A000142(n)*A055204(n) = A001044(n)/A055071(n)

A374988 Largest unitary square divisor of n!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 144, 144, 9, 81, 518400, 518400, 25600, 25600, 1225, 35721, 35721, 35721, 21069103104, 21069103104, 52672757760000, 163840000, 75625, 75625, 18730002677760000, 468250066944000000, 18867078140625, 319515625, 767157015625, 767157015625, 15759472921106221891584
Offset: 0

Views

Author

Amiram Eldar, Jul 26 2024

Keywords

Comments

Unitary analog of A055071.
a(n) is even if and only if n > 1 and is in A006364.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], p^e, 1]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30, 0]
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^f[i, 2]));}
    
  • Python
    from math import prod
    from itertools import count, islice
    from collections import Counter
    from sympy import factorint
    def A374988_gen(): # generator of terms
        c = Counter()
        for i in count(0):
            c += Counter(factorint(i))
            yield prod(p**e for p, e in c.items() if e&1^1)
    A374988_list = list(islice(A374988_gen(),30)) # Chai Wah Wu, Jul 27 2024

Formula

a(n) = A350388(n!).
a(n) = A374989(n)^2.

A056194 Characteristic cube divisor of n!: a(n) = A056191(n!).

Original entry on oeis.org

1, 1, 1, 8, 8, 1, 1, 8, 8, 1, 1, 27, 27, 216, 1000, 1000, 1000, 125, 125, 1, 9261, 74088, 74088, 343, 343, 2744, 74088, 216, 216, 125, 125, 1000, 35937000, 4492125, 12326391, 12326391, 12326391, 98611128, 8024024008, 125375375125
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A056191(A000142(n)). - Amiram Eldar, Sep 06 2020

A056195 a(n) = n! divided by its characteristic cube divisor A056194.

Original entry on oeis.org

1, 2, 6, 3, 15, 720, 5040, 5040, 45360, 3628800, 39916800, 17740800, 230630400, 403603200, 1307674368, 20922789888, 355687428096, 51218989645824, 973160803270656, 2432902008176640000, 5516784599040000
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Examples

			n = 10, a(10) = 10! because g(10!) = 1.
n = 9, a(9) = 45320 because 9! = 2*2*2*2*2*2*2*3*3*5*7 and g(9!) = 2, so a(9) = 9!/8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := n! / (Times @@ f @@@ FactorInteger[n!]); Array[a, 20] (* Amiram Eldar, Sep 06 2020 *)

Formula

The CCD of n! is the cube of g = A055229(n!) = A055230(n). So a(n) = n!/ggg = L*L*f where L = A000188(n!)/A055229(n!) = A055772(n)/A055230(n) and f = A055231(n!) = A055773(n).

A105350 Largest squared factorial dividing n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 36, 36, 576, 576, 518400, 518400, 518400, 518400, 25401600, 25401600, 1625702400, 1625702400, 131681894400, 131681894400, 13168189440000, 13168189440000, 1593350922240000, 1593350922240000, 229442532802560000, 229442532802560000
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2005

Keywords

Comments

a(n) = A001044(A056039(n)) = A056038(n)^2.
Whenever n > 1 is not in A056067, a(n) = A180064(n). - Andrey Zabolotskiy, Oct 19 2023

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[k = 1, Divisible[n!, k!^2], k++]; (k-1)!^2)
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 07 2018 *)

Extensions

Data and offset corrected by Jean-François Alcover, Aug 07 2018
Edited by Andrey Zabolotskiy, Oct 18 2023
Showing 1-10 of 11 results. Next