A055134 Triangle read by rows: T(n,k) = number of labeled endofunctions on n points with k fixed points.
1, 0, 1, 1, 2, 1, 8, 12, 6, 1, 81, 108, 54, 12, 1, 1024, 1280, 640, 160, 20, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1, 134217728
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 1, 2, 1; 8, 12, 6, 1; 81, 108, 54, 12, 1; 1024, 1280, 640, 160, 20, 1; 15625, 18750, 9375, 2500, 375, 30, 1; 279936, 326592, 163296, 45360, 7560, 756, 42, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Eric W. Weisstein's World of Mathematics, Brahmagupta Matrix.
Crossrefs
Programs
-
Mathematica
Clear[B] B[0] = {{x, y}, {t*y, x}}; B[n_] := B[n] = B[n - 1].B[0]; Table[Det[B[n]] /. x -> Sqrt[z] /. y -> 1 /. t -> n, {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[B[n]] /. x -> Sqrt[z] /. y ->1 /. t -> n, z], {n, 0, 10}]]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *) row[n_] := CoefficientList[(x + n - 1)^n + O[x]^(n+1), x]; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Geoffrey Critzer *) Join[{1, 0, 1}, Table[Binomial[n, k]*(n - 1)^(n - k), {n, 2, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 14 2017 *)
-
PARI
for(n=0,15, for(k=0,n, print1(if(n==0 && k==0, 1, if(n==1 && k==0, 0, if(n==1 && k==1, 1, binomial(n,k)*(n-1)^(n-k)))), ", "))) \\ G. C. Greubel, Nov 14 2017
Formula
T(n, k) = C(n, k)*(n-1)^(n-k), for n>1.
E.g.f.: (-LambertW(-y)/y)^(x-1)/(1+LambertW(-y)). - Vladeta Jovovic
O.g.f. for row n: (x + n - 1)^n. - Geoffrey Critzer, Mar 21 2010
Comments