cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055134 Triangle read by rows: T(n,k) = number of labeled endofunctions on n points with k fixed points.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 8, 12, 6, 1, 81, 108, 54, 12, 1, 1024, 1280, 640, 160, 20, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1, 134217728
Offset: 0

Views

Author

Christian G. Bower, Apr 25 2000

Keywords

Comments

The same triangle (except for signs) may be obtained from the determinants of the Brahmagupta matrices, setting x->Sqrt[z], y->1, t->n. - Roger L. Bagula, Apr 09 2008
From Bob Selcoe, Nov 15 2014 (Start):
T(n,k)/A000312(n) is the probability P(n,k) that any member (j) of set J={1..n} will be selected k times given n random draws from J. This is equivalent to rolling an n-sided die (with standard assumptions) with sides numbered j=1..n: P(n,k) is the probability that any j will show k times with n rolls.
P(n,k) = (n-2)!*(n-1)^(n-k+1 )/k!*(n-k)!*n^(n-1); n>1. As n approaches infinity, P(n,0) and P(n,1) approach 1/e. (End)
Row sums give n^n (see A000312). - Bob Selcoe, Sep 08 2015

Examples

			Triangle T(n,k) begins:
       1;
       0,      1;
       1,      2,      1;
       8,     12,      6,     1;
      81,    108,     54,    12,    1;
    1024,   1280,    640,   160,   20,   1;
   15625,  18750,   9375,  2500,  375,  30,  1;
  279936, 326592, 163296, 45360, 7560, 756, 42, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A065440, A055897, A081132(n-2) for n>=2.
Row sums give A000312.

Programs

  • Mathematica
    Clear[B] B[0] = {{x, y}, {t*y, x}}; B[n_] := B[n] = B[n - 1].B[0]; Table[Det[B[n]] /. x -> Sqrt[z] /. y -> 1 /. t -> n, {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[B[n]] /. x -> Sqrt[z] /. y ->1 /. t -> n, z], {n, 0, 10}]]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
    row[n_] := CoefficientList[(x + n - 1)^n + O[x]^(n+1), x];
    Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Geoffrey Critzer *)
    Join[{1, 0, 1}, Table[Binomial[n, k]*(n - 1)^(n - k), {n, 2, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(if(n==0 && k==0, 1, if(n==1 && k==0, 0, if(n==1 && k==1, 1, binomial(n,k)*(n-1)^(n-k)))), ", "))) \\ G. C. Greubel, Nov 14 2017

Formula

T(n, k) = C(n, k)*(n-1)^(n-k), for n>1.
E.g.f.: (-LambertW(-y)/y)^(x-1)/(1+LambertW(-y)). - Vladeta Jovovic
O.g.f. for row n: (x + n - 1)^n. - Geoffrey Critzer, Mar 21 2010