A173228 The number of trailing zeros in (10^n)!
2, 24, 249, 2499, 24999, 249998, 2499999, 24999999, 249999998, 2499999997, 24999999997, 249999999997, 2499999999997, 24999999999998, 249999999999997, 2499999999999996, 24999999999999995, 249999999999999995, 2499999999999999995, 24999999999999999996
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..100
- David S. Hart, James E. Marengo, Darren A. Narayan, and David S. Ross, On the number of trailing zeros in n!, College Math. J., 39(2) (2008) 139-145.
- A. M. Oller-Marcen, A new look at the trailing zeros of n!, arXiv:0906.4868 [math.NT], 2009.
- A. M. Oller-Marcen, J. Maria Grau, On the Base-b Expansion of the Number of Trailing Zeros of b^k!, J. Int. Seq. 14 (2011) 11.6.8
Programs
-
Mathematica
a[n_] := Sum[Floor[10^n/5^i], {i, Floor[Log[5, 10^n]]}]; Array[f, 18] (* edited by Robert G. Wilson v, Jul 22 2012 *)
-
Python
from math import log, ceil def a(n): return sum(10**n // 5**k for k in range(1, ceil(log(10, 5) * n))) # Stephen G Cappella, Dec 13 2017
Formula
a(n) = Sum_{k>=1} floor(10^n/5^k). - Stephen G Cappella, Dec 13 2017
Comments